
17 November 2023

Università degli studi di Udine

Original

Ciaramella: A Synchronous Data Flow Programming Language For Audio DSP

Publisher:

Published
DOI:10.5281/zenodo.6798221

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/1232165 since 2022-09-14T20:17:57Z



Ciaramella: A Synchronous Data Flow Programming Language For Audio DSP

Paolo Marrone
Orastron srl

paolo.marrone@orastron.com

Stefano D’Angelo
Orastron srl

stefano.dangelo@orastron.com

Federico Fontana
Università di Udine

federico.fontana@uniud.it

Gennaro Costagliola
Università di Salerno
gencos@unisa.it

Gabriele Puppis
Univesità di Udine

gabriele.puppis@uniud.it

ABSTRACT

Various programming languages have been developed
specifically for audio DSP in the last decades, yet only
a handful of industrial and commercial applications are
known to actually use them. We assume that this is
due to some common deficiencies of such languages,
namely the tight coupling between syntax and computa-
tional model, which limits modularity, and the adoption
of programming paradigms that are conceptually distant
from conventional DSP formalism. We propose a new
audio DSP programming language, called Ciaramella,
based on the synchronous data flow (SDF) computational
model and featuring a fully declarative syntax to address
these issues. A source-to-source compiler which trans-
lates Ciaramella code to C++ and MATLAB programs
has been developed. We have checked that our solu-
tion allows to naturally represent and correctly schedule
highly-interdependent DSP systems such as Wave Dig-
ital Filters (WDFs) which would be hard to handle in
current audio DSP languages.

1. INTRODUCTION

Audio programming languages raise interest in both the
academia and the industry. They facilitate DSP sys-
tems programming by providing high-level abstractions
to, e.g., efficiently manipulate data streams. There ex-
ist numerous audio programming languages and envi-
ronments whose development dates back to the sixties,
and they offer heterogeneous syntax, programming and
computational models, and compilers or interpreters.

If the target is to develop computationally efficient au-
dio code, then relevant and actively developed languages
are FAUST [1], Max/Gen [2], Reaktor core [3], Soul [4]
and Kronos [5]. FAUST is a mature language which
adopts a purely functional paradigm, whose compiler
performs extensive optimizations and translates to a wide
set of plugin APIs. Gen from the environment Max is a
visual programming language which combines graphical
representation with textual instructions in a declarative

Copyright: © 2022 Paolo Marrone et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

fashion. Gen patches can be translated into VST plu-
gins. Reaktor core, from the Reaktor music software
studio, allows visual programming of DSP systems sim-
ilarly to Max Gen but is not suitable for building plug-
ins. Soul, a relatively recent project, provides a set of
features for coding and running audio DSP systems; in
particular, its language intentionally adopts a C++-like
style improved with some instructions for working with
data flows. Kronos, defined as a metalanguage, explores
the declarative approach to facilitate the manipulation of
signals, graphic visualization and just-in-time compiling.
Conversely, SuperCollider and ChucK put emphasis on
providing an immediate sound result, by featuring code
interpretation and live coding.

Despite the existence of such domain specific lan-
guages, the music software industry tends to rely on
general-purpose programming languages like C and C++
[6], although they force developers to pay attention to a
number of details such as memory management, imple-
mentation techniques, compliance with plugin standards,
and optimizations, which could rather be efficiently han-
dled by domain-specific tools automatically. In our opin-
ion, a potentially successful language should exclusively
focus on the description of audio DSP systems using a
limited set of domain-specific abstractions that are fa-
miliar to users and should be as modular and flexible
as possible. At the same time, the compiler of such
language should produce code that is easily embeddable
in products that run on a wide range of platforms.

Unfortunately, none of the languages mentioned above
meets all such requirements. For example, besides their
differences, they share a syntactic rigidity by which it
is impossible to describe delay-free feedbacks between
components, whether built-in or composite (e.g., the sub-
patches of Gen): either a syntactical error is thrown or
the feedback operation automatically implies the addi-
tion of a unit delay. In the former case, not only it
is impossible to describe uncomputable systems contain-
ing delay-free loops, but also those computable ones
containing loops in which delays are ªhiddenº inside a
composite component. In the latter case, the implicit ad-
dition of a delay at a compositional level tightly couples
the internal implementation details of each component to
its external usage, which clearly violates encapsulation
principles. Both arrangements prevent from easy de-

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

407



scription and modular composition of multi-directional
structures such those found in WDFs [7].

These practices are documented in the recursive com-
position section in the FAUST manual 1 , in section 4.10
of the guide to Reaktor 6 core 2 , in the feedback loops
section of the SOUL documentation 3 , in the History
command section of Max/Gen 4 and in [5] for Kronos.

The proposed language addresses this problem at a
semantic rather than syntactic level. It provides an un-
constrained syntax based on a fully declarative approach
and a dataflow block-based representation which should
be familiar to DSP programmers. The compiler backend
first flattens described systems into a representation con-
sisting only of built-in components and interconnections,
and then only at such a late stage evaluates and ensures
their computability. Also, the underlying semantics of
Ciaramella leverage the Synchronous Data Flow (SDF)
framework which has been extensively researched [8]
but not yet directly or fully adopted by current audio
languages, despite allowing to naturally represent data
flows and the mathematical operations on them. Finally,
the compiler produces generic C++ and MATLAB code
with no external dependencies. Ciaramella, however, is
still at an experimental stage and it is far from being
feature complete.

The paper is organized as follows. Section 2 recalls
some theoretical facts about Synchronous Data Flow, re-
porting the current state of art of the SDF programming
languages and showing how the SDF model fits the DSP
domain. Section 3 describes the language concepts, ab-
stractions, and syntax, furthermore showing some basic
examples. Section 4 describes the compiler developed
for Ciaramella, by focusing on the internal representa-
tion of the process topology, optimizations, computabil-
ity verification, scheduling, and output code generation
phases. Section 5 shows the implementation in Cia-
ramella of a simple WDF low pass filter.

2. SYNCHRONOUS DATA FLOW MODEL

SDF [8] is a restriction of Kahn Process Networks (KPN)
[9]. It provides a set of primitives for describing a net-
work of independent processes (also called actors) that
communicate with each other via unidirectional FIFO
queues emitting and consuming data values, called to-
kens. An execution is ruled by few constraints:

• writing (on a queue) is non-blocking;

• reading (from a queue) is blocking;

• reading implies token consumption;

• a queue can be written by only one process;

1 https://faustcloud.grame.fr/doc/manual/index.
html#recursive-composition

2 https://www.native-instruments.com/fileadmin/
ni_media/downloads/\manuals/REAKTOR_6_Building_
in_Core_English_2015_11.pdf

3 https://github.com/soul-lang/SOUL/blob/
master/docs/SOUL_Language.md#feedback-loops

4 https://docs.cycling74.com/max6/dynamic/c74_
docs.html#gen_overview

• a queue can be read by only one process;

• the number of tokens read and written by each
process per queue per execution is known in ad-
vance.

Interestingly, the queues can be initialized with some
tokens before the first execution. This corresponds to
introduce a communication delay between two actors.
An SDF state is defined as the number of tokens stored
in every queue of the network.

The last rule differentiates SDF from KPN, and it is
of crucial importance since it permits static scheduling
at compile time [10] of the network for a correct se-
quential, or even parallel, execution. An SDF schedule
is defined as a sequence of actor firings repeated period-
ically, and each repetition is called period. A periodic
schedule is a finite schedule that invokes each actor at
least once and does not change the SDF state: this
guarantees that the tokens are not accumulated in the
queues. Finally, a valid schedule is a periodic schedule
which does not cause a graph deadlock, i.e. an actor
planned for execution is not fireable if the input is un-
available. If, for a SDF graph, there is at least one valid
schedule, the graph is defined to be consistent.

The SDF model is inherently multi-rate since the ac-
tors can produce and read different numbers of tokens
at each firing. An actor generally performs simple op-
erations like sum, multiplication, division, where it con-
sumes two input tokens and produces one output to-
ken. However, composite actors have been defined [11]
for modularity and compositional modelling, too. They
encapsulate an SDF graph and act like normal actors,
featuring readability and allowing to handle more com-
plex systems easily. Conversely, non-composite actors
are said to be atomic and a network composed only by
atomic actors is called flat, so that the process of sub-
stituting the composite actors with their internal graph
is said flattening.

2.1 SDF Languages

The SDF model inspired the development of some re-
lated programming languages in the last decades. They
are thought mainly for synchronous reactive systems,
which continuously interact with the execution environ-
ment at the speed imposed by it. The most relevant
are Lustre [12], SIGNAL [13] and Esterel [14], all born
in the eighties. Lustre gained some commercial suc-
cess for some critical systems, too [15]. They all al-
low for the description of an SDF network in terms
of actors and connections; most importantly, they pro-
vide temporal operators for accessing past values (de-
lay) and for setting the initial value of the communi-
cation queues. Barkati et al. [16] made an especially
important work for our study, since they analysed 10
programming languages, 5 of which are audio-specific
and 5 SDF-specific, including the aforementioned ones.
By comparing their syntax and expressiveness while im-
plementing a digital oscillator, they showed, e.g., how

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

408



correspondingly different notions of time were concep-
tualized: in SDF languages time is in fact more strictly
an abstract logical notion, using multiple clocks to per-
form operations at different rates; on the other hand,
audio languages adopt a less general and more practi-
cal approach directly using the sampling rate informa-
tion. Concerning programming paradigms, while Esterel
is imperative, Lustre and SIGNAL rather go for the
declarative approach, in particular the equational and
the relational ones, respectively. The SDF languages
are descriptive à la VERILOG, leaving the scheduling
of the processes to the compiler [10]. In summary, the
study shows a close correlation between the audio and
the synchronous domains by giving an overview of how
they represent a typical DSP problem. We further inves-
tigate this relation by designing an audio programming
language that fully adopts the SDF model.

For a detailed survey about synchronous programming
of reactive systems check [17].

3. THE CIARAMELLA LANGUAGE

Ciaramella is an audio domain-specific programming lan-
guage that adopts the SDF model for describing the DSP
part of an audio plugin. Its design goals are:

• simple and unconstrained syntax;

• modularity;

• composability.

In order to meet them we chose the declarative paradigm,
as opposed to the imperative one: this way, the order of
the instructions is not relevant and a ªvariableº cannot
be assigned more than once according to the static single
assignment (SSA) form [18]. This makes the assignment
operator semantically comparable to equivalence. Also,
any expression in Ciaramella including identifiers always
refers to streams/flows of data: for instance, the state-
ment a = b+ c means an = bn + cn at temporal sample
n.

Our aim regarding the semantics of Ciaramella is to
provide a minimal set of programming abstractions that
is sufficient to represent SDF systems, as described in
the following subsections.

3.1 Blocks, Ports, Connections

In Ciaramella there are three main components:

• Block: it represents an SDF actor and it encap-
sulates an operation. A list of input ports and a
list of output ports are attached to it. Every block
reads tokens from the input ports and writes to-
kens to the output ports.

• Port: it is a communication endpoint. It can be of
input or output type.

• Connection: it defines a directed flow of data (to-
kens) between two ports. Together with the port,
it is analogous to the SDF queue.

An output port can be shared by multiple connections.
The current implementation of Ciaramella provides the
following kinds of block.

3.1.1 Elementary Operation Blocks

Sum, subtraction, multiplication, division, sign change.
They have 2 input ports and 1 output port except for
the sign change/unitary minus which has 1 input port.

3.1.2 Variable, Numeric and Sample Rate Blocks

A variable block has 1 input and 1 output port and
only works as a fork for data flows. A numeric block
has only 1 output port and acts like a constant source
of a given numeric value. The sample rate block is a
special numeric block which outputs the sampling rate
as dictated by the execution environment. It is accessible
by the fs keyword at any point of the code.

3.1.3 Unit Delay Block

A unit delay has 1 input and 1 output port. Its operation
is to store the nth input token and to write the (n−1)th
one. In a pure SDF system a unit delay is obtained
by pre-initializing a queue with one token. Operations
on the connections in the SDF formalism are replaced
by the unit delay block operation in Ciaramella in order
to keep the language simple and the program structure
clean. The two approaches are equivalent.

3.1.4 Composite Block

Composite blocks define sub-systems containing other
blocks and connections and exposing a variable num-
ber of input and output ports. They are analogous to
Nodes in Lustre [12] and subpatches in Max [2]. In a
Ciaramella program there must always be at least one
composite block which acts like a ªmainº, and it is
the only one that directly interacts with the execution
environment.

3.2 Syntax

Ciaramella also aims at syntactic minimalism and essence
by having a low number of keywords and adopting a
conventional and simple design of the program struc-
ture. A Ciaramella program is made of a list of constant
assignments with global scope and a list of composite
block definitions with an internal local scope. The body
of a composite block definition consists of a list of
assignments. The following subsections provide more
details.

3.2.1 Assignments, Expressions, Types

Assignments and expressions follow a C-like syntax.
There are no explicit types, rather all values are meant
to be in IEEE 754 floating point representation [19]. A
composite block is defined by a list of output ports, its
identifier, the list of input ports, and the body. The
following example defines a stereo volume controller
composite block:

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

409



y1, y2 = stereoVolCtrl(x1, v1, x2, v2){

A = 0.8

y1 = x1 * v1 * A

y2 = x2 * v2 * A

}

y1 and y2 are the output ports; stereoVolCtrl

is the name of the composite block; x1, v1, x2 and
v2 are the input ports; the body is included between {
and }. Within the body of the composite block all the
declared output ports must be assigned and they can be
used as variables within expressions. The input ports
cannot be assigned since their value is set outside the
block.

Figure 1: A representation of the steroVolCtrl

composite block example.

Figure 1 contains a graphical representation of the
stereoVolCtrl composite block. It shows how ev-
ery expression creates a block, and sub-expressions are
automatically connected to their parent expression; also,
assignments determine connections between expressions
and assigned variables.

3.2.2 Modularity and Composition

Defining composite blocks allows for reuse and modu-
larization of the code. A composite block can be in-
stantiated within another using a syntax resembling a
function call in C. In the following example,

y = VolAttenuator(x1, x2) {

t1, t2 = stereoVolCtrl(x1, 0.1, x2, 0.2)

y = t1 + t2

}

the composite block VolAttenuator instantiates a
steroVolCtrl. Intuitively, the first output port of
steroVolCtrl gets connected to the input port of
t1 and the second one to t2, as shown in figure 2.

3.2.3 Unit Delays

Unit delays are the analogue of the pre operator in Lus-
tre. It is fundamental to create explicitly computable
loops within the SDF network. The expression de-

lay1(x) returns xn−1, i.e. the previous value. For
example,

counter = delay1(counter) + 1

@counter = 0

Figure 2: A representation of the volAttenuator

composite block example.

implements a counter and it is equivalent to the recursive
formula counter0 = 0; countern = countern−1 + 1 for
n ≥ 1. The second statement sets the initial value of
counter.

By nesting unit delays, one can define a multiple delay
as in

fib = fib_pre + delay1(fib_pre)

fib_pre = delay1(fib)

@fib_pre = 1

@fib = 0

which calculates the Fibonacci number and corresponds
to

fib−1 = 1

fib0 = 0

fibn = fibn−1 + fibn−2.

Note that these two examples are purely demonstrative
are actually useless in audio applications.

3.3 Initialization Statement

We have shown how the @A = expr syntax sets the
initial value of a variable. In particular, expr can be
any valid Ciaramella expression, yet in this context the
values of each variable in expr is evaluated as follows:
if it is itself assigned an initial value expression, then
this algorithm is applied recursively; otherwise, if there
is a regular assignment expression in the current block,
that is recursively used; in all other cases, the variable
is necessarily external, hence its value is externally de-
termined (it evaluates to 0 if the variable is a ªmainº
block input). All delay operators are ignored.

In the following example

@A = 1 + B * C - x

@B = 3

B = x * 0.5

C = 2 + 5

x is an external audio rate signal, hence the initial
expression of A evaluates to @A = 1 + 3 * (2 + 5) -

0.

3.3.1 Comments, End Statement

In Ciaramella a statement can be ended by either a semi-
colon or a new line. There are two kinds of comment:
a classic single-line comment starting with a º#º and a

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

410



continuation comment starting with three dots, º...º,
lasting until the end of line, and which lets the statement
continue on the next line.

4. ZAMPOGNA: THE CIARAMELLA COMPILER

We developed a small yet functional compiler for Cia-
ramella called Zampogna, sized ∼1000 lines of JavaScript
code. The compilation process consists of several sub-
sequent steps: the first ones are parsing and extended
syntax validation, whose output is an Abstract Syntax
Tree (AST). The AST is used to generate an intermedi-
ate representation graph (IG), corresponding to the SDF
process network graph. Upon this graph, optimizations
and static scheduling are performed. Finally, the com-
piler produces target code from the schedule.

4.1 AST to IG

The IG exactly corresponds to the set of components
mentioned in Section 3.1. The compiler translates the
AST to the IG by converting expressions to blocks and
connections, recursively inserting sub-system instances
while appropriately connecting them, and finally by flat-
tening the resulting graph as described in Section 2. Fig-
ure 3 shows the flattened IG for the previous VolAt-

tenuator example. Recursive block instantiation is
not allowed.

Figure 3: A representation of the VolAttenuator

composite block example after the flattening operation.

The initialization statements (@id = expr) are not in-
volved in the construction of the IG but, conveniently,
the compiler uses them to produce another intermedi-
ate graph, called Intermediate Initialization Graph (IIG)
which is executed only once, prior to the main IG, to
produce initial values.

4.2 Optimizations

The compiler performs a series of optimizations over
the IG. Some of them are common like dead code
elimination, constant propagation, and copy propagation.
Domain-specific optimizations are more interesting, par-
ticularly those based on value update rates. A typical
audio application, besides processing audio signals, re-
ceives asynchronous input events at runtime. Usually
the time distance between two of such events is signifi-
cantly higher than the sampling period of the audio sig-
nals. In the SDF model, asynchronous events are treated
as normal synchronous signals whose value is externally

set. This keeps the domain coherent while providing to
the programmer a unified view of signals, events, and
constants. Indeed, every block of the graph emits one
sample at each firing, regardless of its nature. For ex-
ample, numeric constant blocks output the same token
every time, audio rate blocks produce (potentially) dif-
ferent tokens at each firing and user control input blocks
emit the same token until the user moves the associated
knob or slider. Being aware of such characteristic of
the blocks, we define the update class property which is
necessary for the compiler to operate optimizations on
the final code.

Four update classes are defined, ordered by increasing
update frequency:

• Constants class. Numeric constants belong to this
class.

• Sample rate class. The sampling rate value is set
by the execution environment at runtime. This is
typically done only once. fs block output falls
into this update class.

• Control rate class. The output of the blocks rep-
resenting user input controls are included in this
class.

• Audio rate class. Input and output audio signals
are part of this class, as well as the output of the
delay1 blocks.

The update class information is attached to the ports
rather than the blocks since it is, conveniently, a prop-
erty of the signals. It propagates to all nodes of the
network starting from constants, fs, inputs and de-

lay1. Recursively, the output port of a block inherits
the highest rate of the input ports it depends on. Con-
versely, input ports inherit such property from the ports
they are connected to.

Leveraging this information, the compiler makes sure
that intermediate and output values are only updated
when a change occurs or might occur. This behaviour
is commonly known in other contexts as lazy evaluation
of expressions.

4.3 IG Static Scheduling

After the optimizations over the IG are performed, the
next phase is the scheduling of the atomic blocks for
sequential execution. Such blocks need to be scheduled
taking into account their mutual dependencies. In par-
ticular, it is possible to build a dependency graph (DG)
starting from the IG: every directed arc of the IG, ex-
cept for those starting from delay1 blocks, define a
dependency. If A → B indicates a connection from an
output port of A to an input port of B, and if A is not a
delay1 block, then A must be executed prior to B; we
say that B has an instantaneous dependency on A. Delay
blocks are excluded because their output value is already
known at the beginning of the n-th (current) iteration, as
it was calculated at the n − 1-th (previous) one. There
can be multiple valid schedules and [10] investigates the

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

411



issue for multi-rate SDF graphs. Our case is simpler
since we manage only a single synchronous rate and all
blocks produce and consume only one token at each fir-
ing. Therefore, a valid schedule can be represented by
a stack which can be filled by recursively removing the
nodes that do not have instantaneous dependencies left
and pushing them onto the stack.

If an instantaneous circular dependency path is encoun-
tered, the compiler throws an error. This arrangement is
commonly known in the audio DSP literature as delay-
free loop and is not computable. Unlike other languages,
the ability to verify this condition at such a late stage,
that is after having fully flattened the IG into atomic op-
erations and having attempted scheduling on the full IG,
frees us from all syntactical and semantic restrictions in
representing instantaneous feedbacks. This allows for
natural description of highly-interdependent DSP sys-
tems such as WDFs.

As an example, we implemented a wave digital filter
in section 5: its unflattened graph appears to be uncom-
putable due to the presence of delay-free loops, while,
when flattened, it is perfectly computable because delays
are found within the composite blocks.

4.4 IIG Static Scheduling

The IIG is scheduled similarly to the main IG, but with
an important difference: the delay1 blocks are not
excluded from the construction of the arcs of the DG
as no previous value can be used. Therefore, in the IIG
there cannot exist loops, no matter whether they contain
delays or not.

4.5 Output Code Generation

Zampogna produces a C++ program with a VST2 wrap-
per, and a MATLAB script which is useful for fast
prototyping. We used the doT JavaScript templating
library [20] to accomplish this, which makes the code
generation part of the compiler modular and easily ex-
tensible.

4.6 Compiler Options

In order to keep the syntax simple and the programs
modular, some information can only be passed to the
compiler via command line options. For example, the
name of the ªmainº block and the list of input ports
associated to user controls belong to this set of data.

Usage: zampogna.js [-i initial_block]

[-c control_inputs] [-v initial_values]

[-t target_lang] [-o output_folder]

[-d debug_bool]

input_file

4.7 Implementation

The implementation of the Zampogna compiler is avail-
able at https://github.com/paolomarrone/Zampogna. It
has been developed for NodeJS and the only external

dependencies are doT [20] for the output code genera-
tion and Jison [21] for the parser code. It comes with a
few examples, like the WDF from Section 5.

5. A WAVE DIGITAL FILTER IMPLEMENTATION

As a case study we implemented a low pass transfer
function using a WDF [22]:

pi = 3.141592653589793

b, R0 = wdf_resistor(a, R) {

b = 0

R0 = R

}

b, R0 = wdf_capacitor(a, C) {

b = delay1(a)

R0 = 0.5 / (C * fs)

}

b = wdf_voltage_source_root(a, E) {

b = 2 * E - a

}

bu, bl, br, R0 = wdf_3port_series(au, al, ar, Rl, Rr) {

bl = al - Rl / (Rl + Rr) * (al + ar + au)

br = ar - Rr / (Rl + Rr) * (al + ar + au)

bu = -(al + ar)

R0 = Rl + Rr

}

y = lp_filter(x, cutoff) {

fc = (0.1 + 0.3 * cutoff) * fs

C = 1e-6

R = 1 / (2 * pi * fc * C)

bR, RR = wdf_resistor(aR, R)

bC, RC = wdf_capacitor(aC, C)

bV = wdf_voltage_source_root(aV, x)

aV, aR, aC, Rp = wdf_3port_series(...

bV, bR, bC, RR, RC)

@aC = 0

y = 0.5 * (aC + bC)

}

which can be compiled by the following command

zampogna.js -i lp_filter -c cutoff

-t cpp lp_filter.crm

The composite block lp filter instantiates other
composite blocks, which mutually exchange signals by
recursively creating loops. The compiler does not add
implicit delays: the only unit delay is specified in wdf

capacitor. Even if at a first glance it may seem that
the WDF gives rise to delay-free loop errors, indeed
the system is found to be explicitly computable thanks
to the flattening operation over the IG and the global
scheduling. Figure 4 shows a simplified graphical view
of the unflattened IG of lp filter.

This case study shows how Ciaramella is able to na-
tively represent a class of DSP problems, such as WDFs,
that is known to be cumbersome to program in any other
audio programming language. Furthermore, it demon-

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

412



strates its high modularity and composability character-
istics.

Figure 4: Simplified and unflattened graphical represen-
tation of the lp filter WDF example.

Support for the implementation of wave digital models
has been recently added to FAUST through the WD-
models library [7]. It is based on an ad-hoc language
extension referred as metaprogramming which uses a
declarative style. While it manages to represent WDF
systems and produce efficient code, we argue that it
lacks modularity and flexibility due to the automatic in-
clusion of unit delays by the feedback operator (∼).
All necessary component-level delays are implemented
at the tree level, in the most simple case by the
buildtree(connection tree) function, whose code
reads 5

builddown(connection_tree)∼buildup(connection_tree) :

buildout(connection_tree)

In order for this to work properly, delays must be not
implemented in the leaf component they would naturally
belong to. For example, the capacitor component is
implemented by the authors as

capacitor =

case{

(0, R) => _*1;

(1, R) => _;

(2, R) => R0

with {

R0 = t/(2*R);

};

}with{

t = 1/ma.SR; //sampling interval

};

where clearly there is no delay between input and out-
put, contrary to the standard WDF formulation.

5 https://github.com/grame-cncm/faustlibraries/
blob/master/wdmodels.lib

6. CONCLUSIONS

We presented the syntax and semantics of Ciaramella,
a novel audio DSP programming language, and gave an
overview of its compiler. Ciaramella combines a sim-
ple and declarative syntax with the SDF computational
model to represent audio DSP systems. This choice
results in an high level of modularity and composabil-
ity which makes it possible to natively represent even
complex systems such as WDFs.

The Ciaramella language and its compiler are how-
ever still at an early stage of development. Further
work could include the implementation of conditional
and loop blocks, multi-rate support, a library of com-
mon mathematical functions, n-delay operations, arrays
and matrices, as well as more optimizations by sym-
bolic simplification of expressions, pattern recognition
techniques, etc.

7. REFERENCES

[1] ªFAUST,º https://faust.grame.fr/, accessed: 2022-02-
08.

[2] ªMax/gen,º https://docs.cycling74.com/max7/
vignettes/gen topic, accessed: 2022-02-08.

[3] ªReaktor core,º https://www.native-instruments.com/
fileadmin/ni media/downloads/manuals/REAKTOR
6 Building in Core English 2015 11.pdf, accessed:
2022-02-08.

[4] ªSoul,º https://soul.dev/, accessed: 2022-02-08.

[5] V. Norilo, ªKronos: a declarative metaprogramming
language for digital signal processing,º Computer
Music Journal, vol. 39, no. 4, pp. 30±48, 2015.

[6] S. D’Angelo, ªLightweight virtual analog modeling,º
in Proceedings of the 22nd Colloquium on Music In-
formatics, Udine, Italy, 2018, pp. 20±23.

[7] D. Roosenburg, E. Stine, R. Michon, and J. Chowd-
hury, ªA wave digital filter modeling library for the
FAUST programming language,º 6 2021.

[8] E. A. Lee and D. G. Messerschmitt, ªSynchronous
data flow,º Proceedings of the IEEE, vol. 75, no. 9,
pp. 1235±1245, 1987.

[9] K. Gilles, ªThe semantics of a simple language for
parallel programming,º vol. 74, 1974, pp. 471±475.

[10] E. A. Lee and D. G. Messerschmitt, ªStatic schedul-
ing of synchronous data flow programs for digital
signal processing,º IEEE Transactions on computers,
vol. 100, no. 1, pp. 24±35, 1987.

[11] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and
E. A. Lee, ªCompositionality in synchronous data
flow: Modular code generation from hierarchical sdf
graphs,º ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 3, pp. 1±26, 2013.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

413



[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud,
ªThe synchronous data flow programming language
lustre,º Proceedings of the IEEE, vol. 79, no. 9, pp.
1305±1320, 1991.

[13] T. Gautier, P. L. Guernic, and L. Besnard, ªSignal: A
declarative language for synchronous programming
of real-time systems,º in Conference on Functional
Programming Languages and Computer Architecture.
Springer, 1987, pp. 257±277.

[14] G. Berry and G. Gonthier, ªThe esterel syn-
chronous programming language: Design, semantics,
implementation,º Science of computer programming,
vol. 19, no. 2, pp. 87±152, 1992.

[15] N. Halbwachs, ªA synchronous language at work:
the story of lustre,º in Proceedings. Second ACM and
IEEE International Conference on Formal Methods
and Models for Co-Design, 2005. MEMOCODE’05.
IEEE, 2005, pp. 3±11.

[16] K. Barkati and P. Jouvelot, ªSynchronous program-
ming in audio processing: A lookup table oscil-
lator case study,º ACM Computing Surveys (CSUR),
vol. 46, no. 2, pp. 1±35, 2013.

[17] N. Halbwachs, ªSynchronous programming of reac-
tive systems,º in International Conference on Com-
puter Aided Verification. Springer, 1998, pp. 1±16.

[18] B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
ªGlobal value numbers and redundant computations,º
in Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
1988, pp. 12±27.

[19] ªIEEE standard for floating-point arithmetic,º IEEE
Std 754-2019 (Revision of IEEE 754-2008), pp. 1±84,
2019.

[20] ªdot - the fastest + concise javascript template engine
for node.js and browsers.º https://olado.github.io/, ac-
cessed: 2022-02-07.

[21] ªJison,º https://github.com/zaach/jison, accessed:
2022-02-07.

[22] A. Fettweis, ªWave digital filters: Theory and prac-
tice,º Proceedings of the IEEE, vol. 74, no. 2, pp.
270±327, 1986.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

414


