201 research outputs found

    Core Muscle Activation in Suspension Training Exercises

    Get PDF
    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles

    Neural and contractile determinants of burst-like explosive isometric contractions of the knee extensors

    Get PDF
    Walking and running are based on rapid burst-like muscle contractions. Burst-like contractions generate a Gaussian-shaped force profile, in which neuromuscular determinants have never been assessed. We investigated the neural and contractile determinants of the rate of force development (RFD) in burst-like isometric knee extensions. Together with maximal voluntary force (MVF), voluntary and electrically evoked (8 stimuli at 300 Hz, octets) forces were measured in the first 50, 100 and 150 ms of burst-like quadriceps contractions in 24 adults. High-density surface electromyography (HDsEMG) was adopted to measure the root mean square (RMS) and muscle fiber conduction velocity (MFCV) from the vastus lateralis and medialis. The determinants of voluntary force at 50, 100 and 150 ms were assessd by stepwise multiple regression analysis. Force at 50 ms was explained by RMS (R2 = 0.361); force at 100 ms was explained by octet (R2 = 0.646); force at 150 ms was explained by MVF (R2 = 0.711) and octet (R2 = 0.061). Peak RFD (which occurred at 60 ± 10 ms from contraction onset) was explained by MVF (R2 = 0.518) and by RMS50 (R2 = 0.074). MFCV did not emerge as a determinant of RFD. Muscle excitation was the sole determinant of early RFD (50 ms), while contractile characteristics were more relevant for late RFD (≥100 ms). As peak RFD is mostly determined by MVF, it may not be more informative than MVF itself. Therefore, a time-locked analysis of RFD provides more insights into the neuromuscular characteristics of explosive contractions

    Motor unit discharge rate and the estimated synaptic input to the vasti muscles is higher in open compared with closed kinetic chain exercise

    Get PDF
    Conflicting results have been reported on whether closed kinetic chain exercises (such as a leg press) may induce more balanced activation of vastus medialis (VM) and lateralis (VL) muscles compared with open kinetic chain exercise (such as pure knee extension). This study aimed to 1) compare between-vasti motor unit activity and 2) analyze the combined motor unit behavior from both muscles between open and closed kinetic chain exercises. Thirteen participants (four women, mean ± SD age: 27 ± 5 yr) performed isometric knee extension and leg press at 10, 30, 50, 70% of the maximum voluntary torque. High density surface EMG signals were recorded from the VM and VL and motor unit firings were automatically identified by convolutive blind source separation. We estimated the total synaptic input received by the two muscles by analyzing the difference in discharge rate from recruitment to target torque for motor units matched by recruitment threshold. When controlling for recruitment threshold and discharge rate at recruitment, the motor unit discharge rates were higher for knee extension compared with the leg press exercise at 50% [estimate = 1.2 pulses per second (pps), standard error (SE) = 0.3 pps, P = 0.0138] and 70% (estimate = 2.0 pps, SE = 0.3 pps, P = 0.0001) of maximal torque. However, no difference between the vasti muscles were detected in both exercises. The estimates of synaptic input to the muscles confirmed these results. In conclusion, the estimated synaptic input received by VM and VL was similar within and across exercises. However, both muscles had higher firing rates and estimated synaptic input at the highest torque levels during knee extension. Taken together, the results show that knee-extension is more suitable than leg-press exercise at increasing the concurrent activation of the vasti muscles. NEW &amp; NOTEWORTHY There is a significant debate on whether open kinetic chain, single-joint knee extension exercise can influence the individual and combined activity of the vasti muscles compared with closed kinetic chain, multijoint leg press exercise. Here we show that attempting to change the contribution of either the vastus medialis or vastus lateralis via different forms of exercise does not seem to be a viable strategy. However, the adoption of open kinetic chain knee extension induces greater discharge rate and estimated synaptic input to both vasti muscles compared with the leg press.</p
    corecore