97 research outputs found

    Double blind ultrafast pulse characterization by mixed frequency generation in a gold antenna

    Get PDF
    Ultrafast pulse characterization requires the analysis of correlation functions generated by frequency mixing of optical pulses in a nonlinear medium. In this work, we use a gold optical nanoantenna to generate simultaneously Four Wave Mixing and Sum Frequency Generation across the tuning range of a Ti: Sapphire and Optical Parametric Oscillator (OPO) system. Since metal nanoparticles create remarkably strong nonlinear responses for their size without the need for phase matching, this allows us to simultaneously characterize the unknown OPO pulse and its pump pulse using a single spectrogram. The nonlinear mixing is efficient enough to retrieve pulses with energies in the picojoule range

    Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    Get PDF
    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences

    Nonlinear Terahertz Generation in Semiconductor Metasurfaces

    Get PDF
    We demonstrate ultra-thin semiconductor metasurfaces for generation of THz pulses. By investigating the dependence of the THz amplitude and phase on excitation field polarization and crystal orientation, we deduce that the underlying THz emission mechanism in metasurfaces differs from bulk semiconductor wafers with second order nonlinearity playing a dominant role. The metasurface enables control of the THz phase and can therefore be used to spatially structure the THz emitted field. We use this effect to design and demonstrate a metasurface which simultaneously emits and focusses THz pulses

    Age-Related Reference Intervals of the Main Biochemical and Hematological Parameters in C57BL/6J, 129SV/EV and C3H/HeJ Mouse Strains

    Get PDF
    BACKGROUND: Although the mouse is the animal model most widely used to study the pathogenesis and treatment of human diseases, reference values for biochemical parameters are scanty or lacking for the most frequently used strains. We therefore evaluated these parameters in the C57BL/6J, 129SV/EV and C3H/HeJ mice. METHODOLOGY/PRINCIPAL FINDINGS: We measured by dry chemistry 26 analytes relative to electrolyte balance, lipoprotein metabolism, and muscle/heart, liver, kidney and pancreas functions, and by automated blood counter 5 hematological parameters in 30 animals (15 male and 15 female) of each mouse strain at three age ranges: 1-2 months, 3-8 months and 9-12 months. Whole blood was collected from the retro-orbital sinus. We used quality control procedures to investigate analytical imprecision and inaccuracy. Reference values were calculated by non parametric methods (median and 2.5(th) and 97.5(th) percentiles). The Mann-Whitney and Kruskal-Wallis tests were used for between-group comparisons. Median levels of GLU, LDH, Chol and BUN were higher, and LPS, AST, ALP and CHE were lower in males than in females (p range: 0.05-0.001). Inter-strain differences were observed for: (1) GLU, t-Bil, K+, Ca++, PO(4)- (p<0.05) and for TAG, Chol, AST, Fe++ (p<0.001) in 4-8 month-old animals; (2) for CK, Crea, Mg++, Na++, K+, Cl- (p<0.05) and BUN (p<0.001) in 2- and in 10-12 month-old mice; and (3) for WBC, RBC, HGB, HCT and PLT (p<0.05) during the 1 year life span. CONCLUSION/SIGNIFICANCE: Our results indicate that metabolic variations in C57BL/6J, 129SV/EV and C3H/HeJ mice after therapeutic intervention should be evaluated against gender- and age-dependent reference intervals

    A Subversion-Resistant SNARK

    Get PDF
    While succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs) are widely studied, the question of what happens when the CRS has been subverted has received little attention. In ASIACRYPT 2016, Bellare, Fuchsbauer and Scafuro showed the first negative and positive results in this direction, proving also that it is impossible to achieve subversion soundness and (even non-subversion) zero knowledge at the same time. On the positive side, they constructed an involved sound and subversion zero-knowledge argument system for NP. We show that Groth\u27s zk-SNARK for \textsc{Circuit-SAT} from EUROCRYPT 2016 can be made computationally knowledge-sound and perfectly composable Sub-ZK with minimal changes. We just require the CRS trapdoor to be extractable and the CRS to be publicly verifiable. To achieve the latter, we add some new elements to the CRS and construct an efficient CRS verification algorithm. We also provide a definitional framework for sound and Sub-ZK SNARKs and describe implementation results of the new Sub-ZK SNARK

    Stateful Multi-Client Verifiable Computation

    Get PDF
    This paper develops a cryptographic protocol for outsourcing arbitrary stateful computation among multiple clients to an untrusted server, while guaranteeing integrity of the data. The clients communicate only with the server and store only a short authenticator to ensure that the server does not cheat. Our contribution is two-fold. First, we extend the recent hash&prove scheme of Fiore et al. (CCS 2016) to stateful computations that support arbitrary updates by the untrusted server, in a way that can be verified by the clients. We use this scheme to generically instantiate authenticated data types. Second, we describe a protocol for multi-client verifiable computation based on an authenticated data type, and prove that it achieves a computational version of fork linearizability. This is the strongest guarantee that can be achieved in the setting where clients do not communicate directly; it ensures correctness and consistency of outputs seen by the clients individually

    Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs

    Get PDF
    We construct a pairing based simulation-extractable SNARK (SE-SNARK) that consists of only 3 group elements and has highly efficient verification. By formally linking SE-SNARKs to signatures of knowledge, we then obtain a succinct signature of knowledge consisting of only 3 group elements. SE-SNARKs enable a prover to give a proof that they know a witness to an instance in a manner which is: (1) succinct - proofs are short and verifier computation is small; (2) zero-knowledge - proofs do not reveal the witness; (3) simulation-extractable - it is only possible to prove instances to which you know a witness, even when you have already seen a number of simulated proofs. We also prove that any pairing based signature of knowledge or SE-NIZK argument must have at least 3 group elements and 2 verification equations. Since our constructions match these lower bounds, we have the smallest size signature of knowledge and the smallest size SE-SNARK possible

    Chronic migraine classification: current knowledge and future perspectives

    Get PDF
    In the field of so-called chronic daily headache, it is not easy for migraine that worsens progressively until it becomes daily or almost daily to find a precise and universally recognized place within the current international headache classification systems. In line with the 2006 revision of the second edition of the International Classification of Headache Disorders (ICHD-2R), the current prevailing opinion is that this headache type should be named chronic migraine (CM) and be characterized by the presence of at least 15 days of headache per month for at least 3 consecutive months, with headache having the same clinical features of migraine without aura for at least 8 of those 15 days. Based on much evidence, though, a CM with the above characteristics appears to be a heterogeneous entity and the obvious risk is that its definition may be extended to include a variety of different clinical entities. A proposal is advanced to consider CM a subtype of migraine without aura that is characterized by a high frequency of attacks (10–20 days of headache per month for at least 3 months) and is distinct from transformed migraine (TM), which in turn should be included in the classification as a complication of migraine. Therefore, CM should be removed from its current coding position in the ICHD-2 and be replaced by TM, which has more restrictive diagnostic criteria (at least 20 days of headache per month for at least 1 year, with no more than 5 consecutive days free of symptoms; same clinical features of migraine without aura for at least 10 of those 20 days)

    CpG Islands Undermethylation in Human Genomic Regions under Selective Pressure

    Get PDF
    DNA methylation at CpG islands (CGIs) is one of the most intensively studied epigenetic mechanisms. It is fundamental for cellular differentiation and control of transcriptional potential. DNA methylation is involved also in several processes that are central to evolutionary biology, including phenotypic plasticity and evolvability. In this study, we explored the relationship between CpG islands methylation and signatures of selective pressure in Homo Sapiens, using a computational biology approach. By analyzing methylation data of 25 cell lines from the Encyclopedia of DNA Elements (ENCODE) Consortium, we compared the DNA methylation of CpG islands in genomic regions under selective pressure with the methylation of CpG islands in the remaining part of the genome. To define genomic regions under selective pressure, we used three different methods, each oriented to provide distinct information about selective events. Independently of the method and of the cell type used, we found evidences of undermethylation of CGIs in human genomic regions under selective pressure. Additionally, by analyzing SNP frequency in CpG islands, we demonstrated that CpG islands in regions under selective pressure show lower genetic variation. Our findings suggest that the CpG islands in regions under selective pressure seem to be somehow more “protected” from methylation when compared with other regions of the genome
    corecore