25 research outputs found

    The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    Get PDF
    Background: The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors.\ud \ud Methodology/Principal Findings: We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle.\ud \ud Conclusions/Significance: This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic

    Fossil Carder Bee's nest from the Hominin locality of Taung, South Africa

    Get PDF
    The Buxton-Norlim Limeworks southwest of Taung, South Africa, is renowned for the discovery of the first Australopithecus africanus fossil, the ‘Taung Child’. The hominin was recovered from a distinctive pink calcrete that contains an abundance of invertebrate ichnofauna belonging to the Coprinisphaera ichnofacies. Here we describe the first fossil bee’s nest, attributed to the ichnogenus Celliforma, from the Plio-Pleistocene of Africa. Petrographic examination of a cell lining revealed the preservation of an intricate organic matrix lined with the calcitic casts of numerous plant trichomes–a nesting behaviour unique to the modern-day carder bees (Anthidiini). The presence of Celliforma considered alongside several other recorded ichnofossils can be indicative of a dry, savannah environment, in agreement with recent work on the palaeoenvironment of Plio-Pleistocene southern Africa. Moreover, the occurrence of ground-nesting bees provides further evidence that the pink calcrete deposits are of pedogenic origin, rather than speleogenic origin as has previously been assumed. This study demonstrates the potential value of insect trace fossils as palaeoenvironmental indicators

    Microvertebrates preserved in mammal burrows from the Holocene of the Argentine Pampas: a taphonomic and paleoecological approach

    Get PDF
    Microvertebrates are a major component of many assemblages recovered from the Quaternary of the Argentine Pampas. The main goal of this paper is to analyse the taphonomic history of a Holocene microfossil bonebed, recovered from the infilling of a burrow. Evidences suggest the plains vizcacha Lagostomus maximus as the putative producer of the burrow. The assemblage includes individuals belonging to different taxa of mammals (marsupials and rodents) and reptiles (snakes). Taphonomic features suggest that the accumulation inside the burrow was related to flooding processes in the plain. The burrow was a natural trap that favoured the accumulation and preservation of remains corresponding to individuals from different sources. According to the taphonomic evidence, some individuals (Lagostomus maximus, Lestodelphys halli and Serpentes indet.) died inside the burrow, whereas others (Microcavia australis, Reithrodon auritus and Ctenomys sp.) died outside the burrow, and after a time of being exposed on the surface their remains were transported by surface run-offs into the burrow. The record of Lestodelphys halli and Serpentes indet. in the burrow produced by Lagostomus maximus could be related to a circumstantial use. Mammal burrows are a significant taphonomic mode for the late Cenozoic of the Argentine Pampas

    A Late Eocene date for Late Triassic bird tracks

    Get PDF
    Bird-like tracks from northwest Argentina have been reported as being of Late Triassic age1. They were attributed to an unknown group of theropods showing some avian characters. However, we believe that these tracks are of Late Eocene age on the basis of a new weighted mean 206Pb/238U date (isotope dilution–thermal ionization mass spectrometry method) on zircons from a tuff bed in the sedimentary succession containing the fossil tracks. In consequence, the mentioned tracks are assigned to birds and its occurrence matches the known fossil record of Aves.Fil: Melchor, Ricardo Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Buchwaldt, Robert. Massachusetts Institute of Technology; Estados UnidosFil: Bowring, Sam. Massachusetts Institute of Technology; Estados Unido
    corecore