148 research outputs found

    Glycerol effects on optical, weight and geometrical properties of skin tissue

    Get PDF
    Complex study of glycerol e®ects on the skin tissue was performed. The change in optical, weight and geometrical parameters of the rat skin under the action of the glycerol solutions was studied ex vivo. Possible mechanisms of the skin optical clearing under the action of glycerol solutions of di®erent concentrations were discussed. The results can be helpful for re¯nement of models developed to evaluate the e®ective di®usion coe±cients of glycerol in tissues

    Refractive properties of human adipose tissue at hyperthermic temperatures

    Get PDF
    The refractive index (RI) of human adipose tissu

    Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    Get PDF
    Abstract. The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and the optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein

    Kinetics of rat skin optical clearing at topical application of 40%glucose: ex vivo and in vivo studies

    Get PDF
    Optical, molecule diffusion, and mechanical properties of skin and blood microcirculation in the underlying tissues at topical application of 40%-glucose solution in rats were investigated. Optical clearing of ex vivo and in vivo skin was measured within the wavelength range of 400-900 nm using standard spectrometer, and blood microcirculation alterations was measured with laser speckle contrast imaging. Increase of skin collimated transmittance, transverse, and along skin shrinkage and weight loss was observed for the first 20-60 min of immersion, for the longer time, tissue swelling was found. The glucose diffusion coefficients in ex vivo and in vivo rat skin were evaluated as (1.11 ± 0.78) × 10 -6 and (1.54 ± 0.28) × 10 -6 cm 2 /s, respectively. The decrease of average rate of microcirculation in 2.2 fold was observed. The results received allow one to evaluate glucose impact on skin tissue optical and mechanical properties and blood microcirculation

    Photothermal and photodynamic therapy of tumors with plasmonic nanoparticles: challenges and prospects

    Get PDF
    Cancer remains one of the leading causes of death in the world. For a number of neo-plasms, the efficiency of conventional chemo-and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine

    The assessment of effectiveness of plasmonic resonance photothermal therapy in tumor-bearing rats after multiple intravenous administration of gold nanorods

    Get PDF
    To assess the effectiveness of plasmonic photothermal therapy (PPT) multiple intravenous strategy of gold nanorods (GNRs) administration was used before laser exposure. The model of alveolar liver cancer PC-1 was used in male outbred albino rats, which were intravenously administrated by single and multiple injections of GNRs and then were treated by PPT. The gold dosage was 400 μg (single injection group), 800 μg (double injection group), 1200 μg (triple injection group), and absorption maximum of gold nanorods suspension was at the wavelength of 808 nm. 24 hours after last injection the tumors were irradiated by the 808-nm diode laser during 15 min at power density 2.3 W/cm2. Temperature control of the tumor heating was provided by IR imager. 24 hours after the PPT the half of animals from each group was withdrawn from the experiments and the sampling tumor tissue for morphological study was performed. In survived animals the growth of tumors was evaluated during 21 days after the PPT. The antitumor effects of PPT after triple intravenous injection were comparable with those obtained at direct intratumoral administration of similar total dose of GNRs. The effectiveness of PPT depended on gold accumulation in tumor, probably, due to sufficient vascularizTation of tumor tissue

    Investigation of the change of tumor optical properties after laser-induced plasmon-resonant photothermal treatment of transplanted tumors in rats

    Get PDF
    The paper presents the investigation of change of tumor optical properties of the rat tumor doped by gold nanoparticles after laser-induced plasmon-resonant photothermal treatment. To obtain the model tumors the rats have been implanted by suspension of alveolar kidney cancer cells. An hour before the experiment the animals have been injected by the suspension of gold nanorods intratumorally. For irradiation a diode laser with wavelength 808 nm has been used. After the irradiation the tumor has been removed and sliced. Spectra of total and collimated transmission and diffuse reflectance of the samples of different layers of the tumors have been measured in the wavelength range 350-2500 nm. Absorption, scattering, reduced scattering coefficients and scattering anisotropy factor of tumor tissues have been calculated with inverse adding-doubling method. The results of the experiment have shown that after doping the tumor tissue by the plasmon resonant nanoparticles and NIR laser irradiating, there is the decreases of absorption as well as scattering properties of the tumor and surrounding tissues. However, despite the sufficiently high temperature on the surface (about 80°C), the changes in the center of the tumor are insignificant

    The morphological changes in transplanted tumors of rats at plasmonic photothermal therapy

    Get PDF
    The aim of work was to study the morphological changes in transplanted liver tumors of rats after plasmonic photothermal therapy (PPTT). The gold nanorods functionalized with thiolated polyethylene glycol were injected intravenously to rats with transplanted liver cancer PC-1. A day after injection the tumors were irradiated by the infrared 808-nm diode laser. The withdrawal of the animals from the experiment and sampling of tumor tissue for morphological study were performed 24 hours after the laser exposure. The standard histological and immunohistochemical staining with antibodies to proliferation marker Ki-67 and apoptosis marker BAX were used for morphological study of transplanted tumors. The plasmonic photothermal therapy had pronounced damaging effect in rats with transplanted liver tumors expressed in degenerative and necrotic changes in the tumor cells. The decrease of proliferation marker Ki-67 and increase of expression of apoptosis marker BAX were observed in tumor cells after PPTT

    Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,"

    Get PDF
    Abstract The optical properties of human skin, subcutaneous adipose tissue and human mucosa were measured in the wavelength range 400-2000 nm. The measurements were carried out using a commercially available spectrophotometer with an integrating sphere. The inverse adding-doubling method was used to determine the absorption and reduced scattering coefficients from the measurements

    The inflammation markers in serum of tumor-bearing rats after plasmonic photothermal therapy

    Get PDF
    We report on plasmonic photothermal therapy of rats with inoculated cholangiocarcinoma through the intratumoral injection of PEG-coated gold nanorods followed by CW laser light irradiation. The length and diameter of gold nanorods were 41±8 nm and 10±2 nm, respectively; the particle mass-volume concentration was 400 μg/mL, which corresponds to the optical density of 20 at the wavelength 808 nm. The tumor-bearing rats were randomly divided into three groups: (1) without any treatment (control); (2) with only laser irradiation of tumor; (3) with intratumoral administration of gold nanorods and laser irradiation of tumors. An hour before laser irradiation, the animals were injected intratumorally with gold nanorod solutions in the amount of 30% of the tumor volume. The infrared 808-nm laser with power density of 2.3 W/cm2 was used for plasmonic photothermal therapy (PTT). The withdraw of animals from the experiment was performed 24 h after laser exposure. The content of lipid peroxidation products and molecular markers of inflammation (TNF-α, IGF-1, VEGF-C) was determined by ELISA test in serum of rats. The standard histological techniques with hematoxylin and eosin staining were used for morphological examination of tumor tissues. It was revealed that the significant necrotic changes were noted in tumor tissue after plasmonic photothermal therapy, which were accompanied by formation of inflammatory reaction with release of proinflammatory cytokines and lipid peroxidation products into the bloodstream
    corecore