1,664 research outputs found

    Hazards of high altitude decompression sickness during falls in barometric pressure from 1 atm to a fraction thereof

    Get PDF
    Various tests related to studies concerning the effects of decompression sicknesses at varying pressure levels and physical activity are described. The tests indicate that there are no guarantees of freedom from decompression sicknesses when man transitions from a normally oxygenated normobaric nitrogen-oxygen atmosphere into an environment having a 0.4 atm or lower pressure and he is performing physical work

    Laboratory simulation of the action of weightlessness on the human organism

    Get PDF
    A brief history of attemps by the U.S. and the U.S.S.R. to simulate weightlessness in the laboratory is presented. Model for laboratory modeling of weightlessness included the bed regimen, the clinostat, and water immersion. An outline of immediate physiological effects of weightlessness and long term effects is offered

    Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra

    Get PDF
    Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here an efficient algorithm that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against trial data to characterize its robustness and identify its limitations and strengths. The algorithm was then applied to identify the viscoelastic response of reconstituted collagen, revealing an extensive distribution of viscoelastic time constants. © 2015 Elsevier Ltd

    The effect of dynamic factors of space flight on animal organisms

    Get PDF
    Physiological, biochemical and morphological studies made on the Cosmos-782 biosatellite are presented. Rats, which were exposed on the biosatellite for 19.5 days, were examined immediately after completion of the flight and also during the 25 day period of readaptation to earth's conditions. The effect of factors of space flight, primarily weightlessness, on the organism was investigated for all systems of the body

    Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen

    Get PDF
    The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72 h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2 s and 10-30 s. Different finite time constants in the range of 1-7000 s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000 s, and to merge relaxation finite time constants in the 0.5-2 s range into a single time content in the 1 s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. Statement of Significance As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of fibroblasts within a three-dimensional culture environment. Results are of particular interest because of the ways that fibroblasts alter the mechanical response of collagen at loading frequencies associated with cardiac contraction in humans. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Modelling growth and form of the scleractinian coral Pocillopora verrucosa and the influence of hydrodynamics

    Get PDF
    The growth of scleractinian corals is strongly influenced by the effect of water motion. Corals are known to have a high level of phenotypic variation and exhibit a diverse range of growth forms, which often contain a high level of geometric complexity. Due to their complex shape, simulation models represent an important option to complement experimental studies of growth and flow. In this work, we analyzed the impact of flow on coral's morphology by an accretive growth model coupled with advection-diffusion equations. We performed simulations under no-flow and uni-directional flow setup with the Reynolds number constant. The relevant importance of diffusion to advection was investigated by varying the diffusion coefficient, rather than the flow speed in Péclet number. The flow and transport equations were coupled and solved using COMSOL Multiphysics. We then compared the simulated morphologies with a series of Computed Tomography (CT) scans of scleractinian corals Pocillopora verrucosa exposed to various flow conditions in the in situ controlled flume setup. As a result, we found a similar trend associated with the increasing Péclet for both simulated forms and in situ corals; that is uni-directional current tends to facilitate asymmetrical growth response resulting in colonies with branches predominantly developed in the upstream direction. A closer look at the morphological traits yielded an interesting property about colony symmetry and plasticity induced by uni-directional flow. Both simulated and in situ corals exhibit a tendency where the degree of symmetry decreases and compactification increases in conjunction with the augmented Péclet thus indicates the significant importance of hydrodynamics

    Multimodal thrombectomy device for treatment of acute deep venous thrombosis

    Get PDF
    Deep vein thrombosis (DVT) is a potentially deadly medical condition that is costly to treat and impacts thousands of Americans every year. DVT is characterized by the formation of blood clots within the deep venous system of the body. If a DVT dislodges it can lead to venous thromboembolism (VTE) and pulmonary embolism (PE), both of which can lead to significant morbidity or death. Current treatment options for DVT are limited in both effectiveness and safety, in part because the treatment of the DVT cannot be confined to a defined sequestered treatment zone. We therefore developed and tested a novel thrombectomy device that enables the sequesteration of a DVT to a defined treatment zone during fragmentation and evacuation. We observed that, compared to a predicate thrombectomy device, the sequestered approach reduced distal DVT embolization during ex vivo thrombectomy. The sequestered approach also facilitated isovolumetric infusion and suction that enabled clearance of the sequestered treatment zone without significantly impacting vein wall diameter. Results suggest that our novel device using sequestered therapy holds promise for the treatment of high risk large-volume DVTs

    Método de levantamento fotogramétrico aplicado ao projeto de conservação da fachada do mosteiro de Alcobaça

    Get PDF
    Atualmente existe no mercado uma grande variedade de softwares fotogramétricos. O levantamento arquitetónico com recurso a esta tecnologia tem sido cada vez mais procurado, para servir de base a Projetos de Conservação do Património Arquitetónico. Com o objetivo de testar softwares e avaliar a sua aplicabilidade em Projeto, efetuamos o levantamento fotogramétrico da fachada da igreja do Mosteiro de Alcobaça, em colaboração com a Direção Geral do Património Cultural (DGPC). Apresentamos todas as fases do processo: o planeamento (testes dos equipamentos disponíveis, drones e máquinas fotográficas), o trabalho de campo (levantamentos fotográfico e topográfico) e o trabalho de gabinete (processamento de dados e restituição gráfica). Obtivemos bons resultados de reconstrução da nuvem densa de pontos e visualização do modelo 3D, com um dos softwares utilizados. Ambos apresentaram erro devido à distorção da lente fotográfica, no entanto o método foi eficaz para o registo de pormenores construtivos necessário ao Projeto de Conservação, em particular para mapeamento de anomalias e medição dos trabalhos a executar.info:eu-repo/semantics/submittedVersio
    • …
    corecore