3 research outputs found

    Contribution of fish farming ponds to the production of immature Anopheles spp. in a malaria-endemic Amazonian town

    No full text
    Submitted by sandra infurna ([email protected]) on 2016-03-10T15:46:30Z No. of bitstreams: 1 izabel_reis_etal_IOC_2015.pdf: 1921122 bytes, checksum: a9d37bb1b751e73973f59130437da246 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-03-10T16:32:12Z (GMT) No. of bitstreams: 1 izabel_reis_etal_IOC_2015.pdf: 1921122 bytes, checksum: a9d37bb1b751e73973f59130437da246 (MD5)Made available in DSpace on 2016-03-10T16:32:12Z (GMT). No. of bitstreams: 1 izabel_reis_etal_IOC_2015.pdf: 1921122 bytes, checksum: a9d37bb1b751e73973f59130437da246 (MD5) Previous issue date: 2015Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil. / Fundação Oswaldo Cruz. NOSMOVE (Parceria DIRAC-IOC-VPAAPS/FIOCRUZ). Núcleo Operacional Sentinela de Mosquitos Vetores. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Programa de Computação Científica. Rio de Janeiro, RJ, Brasil.Universidade Federal do Acre. Centro Multidisciplinar. Cruzeiro do Sul, AC, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil.Universidade Federal do Acre. Centro Multidisciplinar. Cruzeiro do Sul, AC, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil. / Fundação Oswaldo Cruz. NOSMOVE (Parceria DIRAC-IOC-VPAAPS/FIOCRUZ). Núcleo Operacional Sentinela de Mosquitos Vetores. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Doenças Parasitárias. Rio de Janeiro, RJ, Brasil.Secretaria Municipal de Saúde de Cruzeiro do Sul. Cruzeiro do Sul, AC, Brasil.Secretaria Municipal de Saúde de Cruzeiro do Sul. Cruzeiro do Sul, AC, Brasil.Fundação Oswaldo Cruz. NOSMOVE (Parceria DIRAC-IOC-VPAAPS/FIOCRUZ). Núcleo Operacional Sentinela de Mosquitos Vetores. Rio de Janeiro, RJ, Brasil.Secretaria de Estado de Agropecuária de Cruzeiro do Sul. Cruzeiro do Sul, AC, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Transmissores de Hematozoários. Rio de Janeiro, RJ, Brasil. / Fundação Oswaldo Cruz. NOSMOVE (Parceria DIRAC-IOC-VPAAPS/FIOCRUZ). Núcleo Operacional Sentinela de Mosquitos Vetores. Rio de Janeiro, RJ, Brasil.Background: In the past decade fish farming has become an important economic activity in the Occidental Brazilian Amazon, where the number of new fish farms is rapidly increasing. One of the primary concerns with this phenomenon is the contribution of fishponds to the maintenance and increase of the anopheline mosquito population, and the subsequent increase in human malaria burden. This study reports the results of a 2-year anopheline abundance survey in fishponds and natural water bodies in a malaria-endemic area in northwest Brazil. The objective of this study was to investigate the contribution of natural water bodies (rivers, streams, creeks, ponds, and puddles) and artificial fishponds as breeding sites for Anopheles spp. in Mâncio Lima, Acre and to investigate the effect of limnological and environmental variables on Anopheles spp. larval abundance. Methods: Natural water bodies and fishponds were sampled at eight different times over 2 years (early, mid and late rainy season, dry season) in the Amazonian town of Mâncio Lima, Acre. Anopheline larvae were collected with an entomological dipper, and physical, chemical and ecological characteristics of each water body were measured. Management practices of fishpond owners were ascertained with a systematic questionnaire. Results: Fishponds were four times more infested with anopheline larvae than natural water bodies. Electrical conductivity and the distance to the nearest house were both significant inverse predictors of larval abundance in natural water bodies. The density of larvae in fishponds raised with increasing border vegetation. Fishponds owned by different farmers varied in the extent of anopheline larval infestation but ponds owned by the same individual had similar infestation patterns over time. Commercial fishponds were 1.7-times more infested with anopheline larvae compared to fishponds for family use. Conclusions: These results suggest that fishponds are important breeding sites for anopheline larvae, and that adequate management activities, such as removal of border vegetation could reduce the abundance of mosquito larvae, most importantly Anopheles darlingi

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore