15 research outputs found

    Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite

    Get PDF
    Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon omega-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between omega-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state

    Systematic evaluation of chromosome conformation capture assays [preprint]

    Get PDF
    Chromosome conformation capture (3C)-based assays are used to map chromatin interactions genome-wide. Quantitative analyses of chromatin interaction maps can lead to insights into the spatial organization of chromosomes and the mechanisms by which they fold. A number of protocols such as in situ Hi-C and Micro-C are now widely used and these differ in key experimental parameters including cross-linking chemistry and chromatin fragmentation strategy. To understand how the choice of experimental protocol determines the ability to detect and quantify aspects of chromosome folding we have performed a systematic evaluation of experimental parameters of 3C-based protocols. We find that different protocols capture different 3D genome features with different efficiencies. First, the use of cross-linkers such as DSG in addition to formaldehyde improves signal-to-noise allowing detection of thousands of additional loops and strengthens the compartment signal. Second, fragmenting chromatin to the level of nucleosomes using MNase allows detection of more loops. On the other hand, protocols that generate larger multi-kb fragments produce stronger compartmentalization signals. We confirmed our results for multiple cell types and cell cycle stages. We find that cell type-specific quantitative differences in chromosome folding are not detected or underestimated by some protocols. Based on these insights we developed Hi-C 3.0, a single protocol that can be used to both efficiently detect chromatin loops and to quantify compartmentalization. Finally, this study produced ultra-deeply sequenced reference interaction maps using conventional Hi-C, Micro-C and Hi-C 3.0 for commonly used cell lines in the 4D Nucleome Project

    Towards Understanding the Molecular Basis of Human Endoderm Development Using CRISPR-Effector and Single-Cell Technologies

    No full text
    The definitive endoderm gives rise to several specialized organs, including the thymus. Improper development of the definite endoderm or its derivatives can lead to human disease; in the case of the thymus, immunodeficiency or autoimmune disorders. Human pluripotent stem cells (hPSCs) have emerged as a system to model human development, as study of their differentiation allows for elucidation of the molecular basis of cell fate decisions, under both healthy and impaired conditions. Here, we first developed a CRISPR-effector system to control endogenous gene expression in hPSCs, a novel approach to manipulating hPSC state. Next, the human-specific, loss-of-function phenotypes of candidate transcription factors driving hPSC-to-definitive endoderm differentiation were analyzed through combined CRISPR-perturbation and single-cell RNA-sequencing. This analysis revealed the importance of TGFβ mediators in human definitive endoderm differentiation as well as identified an unappreciated role for FOXA2 in human foregut development. Finally, as the differentiation of definitive endoderm to thymic epithelial progenitors (TEPs) is of particular interest, a single-cell transcriptomic atlas of murine thymus development was generated in anticipation of identifying factors driving later stages of TEP differentiation. Taken together, this dissertation establishes a CRISPR-effector system to interrogate gene and regulatory element function in hPSC differentiation strategies, details the role of specific transcription factors in human endoderm differentiation, and sets the groundwork for future investigations to characterize hPSC-derived TEPs and the factors driving their differentiation

    Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells

    Get PDF
    Single-cell sequencing technologies have revealed an unexpectedly broad repertoire of cells required to mediate complex functions in multicellular organisms. Despite the multiple roles of adipose tissue in maintaining systemic metabolic homeostasis, adipocytes are thought to be largely homogenous with only 2 major subtypes recognized in humans so far. Here we report the existence and characteristics of 4 distinct human adipocyte subtypes, and of their respective mesenchymal progenitors. The phenotypes of these distinct adipocyte subtypes are differentially associated with key adipose tissue functions, including thermogenesis, lipid storage, and adipokine secretion. The transcriptomic signature of brite/beige thermogenic adipocytes reveals mechanisms for iron accumulation and protection from oxidative stress, necessary for mitochondrial biogenesis and respiration upon activation. Importantly, this signature is enriched in human supraclavicular adipose tissue, confirming that these cells comprise thermogenic depots in vivo, and explain previous findings of a rate-limiting role of iron in adipose tissue browning. The mesenchymal progenitors that give rise to beige/brite adipocytes express a unique set of cytokines and transcriptional regulators involved in immune cell modulation of adipose tissue browning. Unexpectedly, we also find adipocyte subtypes specialized for high-level expression of the adipokines adiponectin or leptin, associated with distinct transcription factors previously implicated in adipocyte differentiation. The finding of a broad adipocyte repertoire derived from a distinct set of mesenchymal progenitors, and of the transcriptional regulators that can control their development, provides a framework for understanding human adipose tissue function and role in metabolic disease

    Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development

    Get PDF
    Summary: Studies in vertebrates have outlined conserved molecular control of definitive endoderm (END) development. However, recent work also shows that key molecular aspects of human END regulation differ even from rodents. Differentiation of human embryonic stem cells (ESCs) to END offers a tractable system to study the molecular basis of normal and defective human-specific END development. Here, we interrogated dynamics in chromatin accessibility during differentiation of ESCs to END, predicting DNA-binding proteins that may drive this cell fate transition. We then combined single-cell RNA-seq with parallel CRISPR perturbations to comprehensively define the loss-of-function phenotype of those factors in END development. Following a few candidates, we revealed distinct impairments in the differentiation trajectories for mediators of TGFβ signaling and expose a role for the FOXA2 transcription factor in priming human END competence for human foregut and hepatic END specification. Together, this single-cell functional genomics study provides high-resolution insight on human END development. : Genga et al. utilize a single-cell RNA-sequencing-based CRISPR interference approach to screen transcription factors predicted to have a role in human definitive endoderm differentiation. The perturbation screen identifies an important role of TGFβ signaling-related factors. Follow-up of FOXA2 reveals genome-wide molecular changes and altered differentiation competency in endoderm. Keywords: pluripotent stem cells, endoderm, single-cell RNA-seq, CRISPRi, human development, chromatin accessibility, hepatic endoderm, dCas9-KRAB, stem cell differentiation, perturbation scree

    Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells

    No full text
    The identification of the trans-acting factors and cis-regulatory modules that are involved in human pluripotent stem cell (hPSC) maintenance and differentiation is necessary to dissect the operating regulatory networks in these processes and thereby identify nodes where signal input will direct desired cell fate decisions in vitro or in vivo. To deconvolute these networks, we established a method to influence the differentiation state of hPSCs with a CRISPR-associated catalytically inactive dCas9 fused to an effector domain. In human embryonic stem cells, we find that the dCas9 effectors can exert positive or negative regulation on the expression of developmentally relevant genes, which can influence cell differentiation status when impinging on a key node in the regulatory network that governs the cell state. This system provides a platform for the interrogation of the underlying regulators governing specific differentiation decisions, which can then be employed to direct cellular differentiation down desired pathways

    Functional annotation of native enhancers with a Cas9-histone demethylase fusion

    No full text
    Understanding of mammalian enhancers is limited by the lack of a technology to rapidly and thoroughly test the cell type-specific function. Here, we use a nuclease-deficient Cas9 (dCas9)-histone demethylase fusion to functionally characterize previously described and new enhancer elements for their roles in the embryonic stem cell state. Further, we distinguish the mechanism of action of dCas9-LSD1 at enhancers from previous dCas9-effectors

    Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules

    Get PDF
    Anterior foregut endoderm (AFE) gives rise to therapeutically relevant cell types in tissues such as the esophagus, salivary glands, lung, thymus, parathyroid and thyroid. Despite its importance, reports describing the generation of AFE from pluripotent stem cells (PSCs) by directed differentiation have mainly focused on the Nkx2.1(+) lung and thyroid lineages. Here, we describe a novel protocol to derive a subdomain of AFE, identified by expression of Pax9, from PSCs using small molecules and defined media conditions. We generated a reporter PSC line for isolation and characterization of Pax9(+) AFE cells, which when transplanted in vivo, can form several distinct complex AFE-derived epithelia, including mucosal glands and stratified squamous epithelium. Finally, we show that the directed differentiation protocol can be used to generate AFE from human PSCs. Thus, this work both broadens the range of PSC-derived AFE tissues and creates a platform enabling the study of AFE disorders

    Inferring population dynamics from single-cell RNA-sequencing time series data

    No full text
    Recent single-cell RNA-sequencing studies have suggested that cells follow continuous transcriptomic trajectories in an asynchronous fashion during development. However, observations of cell flux along trajectories are confounded with population size effects in snapshot experiments and are therefore hard to interpret. In particular, changes in proliferation and death rates can be mistaken for cell flux. Here we present pseudodynamics, a mathematical framework that reconciles population dynamics with the concepts underlying developmental trajectories inferred from time-series single-cell data. Pseudodynamics models population distribution shifts across trajectories to quantify selection pressure, population expansion, and developmental potentials. Applying this model to time-resolved single-cell RNA-sequencing of T-cell and pancreatic beta cell maturation, we characterize proliferation and apoptosis rates and identify key developmental checkpoints, data inaccessible to existing approaches
    corecore