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SUMMARY

Studies in vertebrates have outlined conserved mo-
lecular control of definitive endoderm (END) develop-
ment. However, recent work also shows that key
molecular aspects of human END regulation differ
even from rodents. Differentiation of human embry-
onic stem cells (ESCs) to END offers a tractable sys-
tem to study the molecular basis of normal and
defective human-specific END development. Here,
we interrogated dynamics in chromatin accessibility
during differentiation of ESCs to END, predicting
DNA-binding proteins that may drive this cell fate
transition. We then combined single-cell RNA-seq
with parallel CRISPR perturbations to comprehen-
sively define the loss-of-function phenotype of those
factors in END development. Following a few candi-
dates, we revealed distinct impairments in the differ-
entiation trajectories for mediators of TGFb signaling
and expose a role for the FOXA2 transcription factor
in priming human END competence for human fore-
gut and hepatic END specification. Together, this
single-cell functional genomics study provides
high-resolution insight on human END development.

INTRODUCTION

Human embryonic stem cell (ESC) differentiation strategies to

generate definitive endoderm (END) allow for interrogation of dif-

ferentiation-associated signaling requirements and chromatin

states (D’Amour et al., 2005; Gifford et al., 2013; Loh et al.,

2014). While various transcription factors (TFs) have been evalu-

ated for their role in vertebrate END formation (Zorn and Wells,

2009), there are notable species differences in TF requirements

(Shi et al., 2017; Tiyaboonchai et al., 2017; Zhu and Huangfu,

2013). For example, recent loss-of-function analyses revealed

important roles of TFs, including GATA6 and KLF8, specifically

in human END (Allison et al., 2018; Chu et al., 2016; Tiyaboonchai

et al., 2017), highlighting the need for increased throughput in

functional analyses of TF dependencies in human.

CRISPR interference (CRISPRi) systems can effectively

disrupt gene function in human pluripotent stem cells (Kearns

et al., 2014; Mandegar et al., 2016), with low off-target effects

(Gilbert et al., 2014). CRISPRi can also be combined with

droplet-based, single-cell RNA-sequencing (scRNA-seq) read-

outs (Adamson et al., 2016; Xie et al., 2017), allowing functional

analysis of molecular pathways guiding differentiation while

balancing resolution and throughput. Here, we predicted candi-

date molecular drivers of END differentiation (END-Diff) by

computationally integrating dynamics of chromatin accessibility

and transcriptome-wide changes. To delineate candidate roles,

we conducted a parallel scRNA-seq CRISPRi screen to perturb

the factors during END-Diff. We uncover distinct blocks in early

human END development mediated by loss of TFs involved in

transforming growth factor b (TGFb) signaling, while perturbation

of the TF FOXA2 results in an altered differentiation competency

at later stages.

RESULTS

ChromatinAccessibility andTranscriptomeDynamics of
END-Diff
Using an efficient ESC differentiation platform (Figures S1A and

S1B), we compare ESC and END by RNA-seq and assay for

transposase-accessible chromatin using sequencing (ATAC-

seq) (Figure 1A) revealing 2,905 differentially expressed tran-

scripts (Figure S1C; Table S2; false-discovery rate [FDR] <

0.01; log fold change R 1.0) and differential chromatin accessi-

bility at 34,025 sites (Figures 1B and S1D; Table S2; FDR < 0.05;

log fold changeR 1.0), respectively. Analysis by ATAC-seq tran-

scription factor activity prediction (atacTFAP) of ESC, END, and

pancreatic beta cells was applied to reveal putative molecular

drivers of END-Diff. While many of the predicted DNA-binding

proteins have been associated with mesendoderm and END for-

mation (e.g., GATA4, GATA6, GSC, SOX17, FOXH1, FOXA2,

OTX2, EOMES, SMAD2, SMAD4, and MIXL1) (Zorn and Wells,

2009), other candidates have not been directly implicated in early

END-Diff (e.g., ZBTB33, ESRRA, ZNF410, and E2F6). In total, 50

TF candidates were selected for functional follow-up, covering a

spectrum of potential facilitators and repressors of human END-

Diff. Among the 50 candidates, two factors were included that

are implicated in structural aspects of chromatin organization
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Figure 1. scRNA-Seq CRISPRi Screen Identifies Molecular Drivers of Human END-Diff

(A) Representative integrative genomics viewer (IGV) tracks at theOCT4 and SOX17 loci. RNA-seq and ATAC-seq datasets for H1 ESC or END highlight dynamic

transcriptome and chromatin changes.

(legend continued on next page)
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(CTCF and YY1) with described roles in the exit of pluripotency

(Balakrishnan et al., 2012; Weintraub et al., 2017).

Single-Cell CRISPRi Screening Reveals Candidate
Regulators of END-Diff
We utilized a lentiviral guide RNA (gRNA) delivery system (Datlin-

ger et al., 2017) together with a gene-targeted H1-AAVS1-

TetOn-dCas9-KRAB ESC line (Figures S1E–S1H) to assay the

transcriptomic effects of atacTFAP candidate repression on

pooled human END-Diff at single-cell resolution while simulta-

neously identifying the gRNA delivered to each cell. Analysis

was performed at the END time point (n = 2 biological replicates)

via droplet-based capture and profiling of individual cells by

scRNA-seq (Figure 1D).

After cell filtering and quality control (Figures S2A–S2J;

Table S3), unsupervised analysis yields four clusters as visual-

ized by t-distributed stochastic neighbor embedding (tSNE) (Fig-

ure 1E). The three smaller clusters contain 1,627 (cluster 1), 1,015

(cluster 2), and 714 (cluster 3) cells. The largest cluster (cluster 0)

contains 12,754 cells and captures most control scramble

gRNAs (Figure 1F; p < 2.2E-16). Ranking of transcripts differen-

tially expressed between clusters (Figure 1G; q < 0.05, fold

change [FC] > 1.5) places END-associated transcripts LEFTY1,

LEFTY2,CXCR4, andSOX17 in the top 25 transcripts for cluster 0

(Table S3).

Cluster characterization via Enrichr (Chen et al., 2013; Kule-

shov et al., 2016) links clusters 0 and 3 to END formation, cluster

1 to SOX2 and NANOG binding, and cluster 2 to FOSL2 binding.

The END-associated transcript SOX17 is expressed in clusters

0 and 2, while the pluripotency-associated transcript POU5F1

is expressed mostly in cells of cluster 1 (Figure 1H).MIXL1 is ex-

pressed in all clusters except cluster 2, and the BMP target gene,

ID1, is highly expressed in cluster 2 (Figure 1H). The END anno-

tation in cluster 3 is driven by mesendodermal genes MIXL1,

LHX1, and NODAL rather than END hallmarks such as SOX17.

This analysis suggests that the four clusters represent entirely

different cellular states, rather than subtle transcriptomic differ-

ences. We predicted these differences were driven by effects

of atacTFAP candidate perturbation.

Targeting of the TGFbPathway Affects Differentiation in
a Target-Specific Manner
Since analysis of the scRNA-seq CRISPRi END libraries reveals

distinct clusters, we sought to identify the gRNA-targeted TFs

driving the transcriptomic changes. Further investigation of clus-

ters 1, 2, and 3 reveals significant enrichment of gRNAs specific

to TFs known to function within the TGFb signaling pathway,

including FOXH1, SMAD2, and SMAD4 (Massagué, 2012), or

to be regulated by TGFb signaling (SOX17) (Alexander and Stain-

ier, 1999) (Figures 2A and 2B; Table S3). FOXH1-specific gRNAs

are significantly enriched in cluster 1, SMAD2- and SMAD4-spe-

cific gRNAs are significantly enriched in cluster 2, and SOX17-

specific gRNAs are enriched in cluster 3 (Figure 2B; Table S3).

To see whether any cluster could be interpreted as a differen-

tiation block, we characterized a bulk RNA-seq END-Diff time

course of control ESCs (Figure 2C; transcript list curated from

literature; Chu et al., 2016; Loh et al., 2014). Expression of plurip-

otency-associated transcripts (e.g., POU5F1, SOX2, NANOG)

decreases over time, while expression of END-associated

transcripts increases (e.g., SOX17, FOXA2, GATA4, GATA6).

Expression of mesendoderm-associated transcripts (e.g.,

MIXL1, EOMES, T) is high at day 1 of differentiation and de-

creases or is maintained through differentiation (Figure 2C).

Cluster 0 is enriched for scramble-gRNAs and expresses high

levels of known END transcripts, including SOX17 (Figures 1H

and 2C). The expression of pluripotencymarkers is low and over-

all gene expression is similar to day 3 of the time course (Fig-

ure 2C). Cluster 1 expresses the highest levels of ESC markers,

including POU5F1 (Figures 1H and 2C). Together with low

expression of END markers, cluster 1 is most comparable to

day 0 of the time course (Figure 2C). In cluster 2, there is relatively

low expression of both ESCmarkers andmesendodermmarkers

(Figure 2C). Some ENDmarkers are expressed, including SOX17

and FOXA2, while others are low, such as GATA6, NODAL, and

HHEX (Figure 2C). Notably, expression of ID1 is high in cluster 2

(Figures 1H and 2C), consistent with the finding that modulation

of TGFb signaling through Smad2/3 gene knockouts in mouse

ESCs results in increased ID transcript expression (Senft et al.,

2018). Overall gene expression of cluster 2 is not comparable

to any day within the time course. Cluster 3 expresses the high-

est levels of the mesendoderm markers MIXL1, EOMES, and T,

while expression of END markers is either low (e.g., FOXA2,

CXCR4, GATA4) or high (e.g., GATA6, NODAL, HHEX; Fig-

ure 2C). Comparison with the time course suggests that

SOX17 repression captures cells in a mesendoderm-like state

(Figure 2C).

Concordant with a critical role of TGFb in pluripotency and

END-Diff (Avery et al., 2010; Sakaki-Yumoto et al., 2013; Shen,

2007; Wei and Wang, 2018), analysis of clusters 1, 2, and 3 re-

veals significant enrichment of perturbations linked to the

TGFb signaling pathway. Repression of FOXH1 and SOX17 halts

differentiation at the pluripotent- or the mesendoderm-like state,

respectively, and targeting of SMAD2 and SMAD4most likely re-

sults in an alternative cellular state that is neither ESC-like or

END-like, supporting a model of target-specific differentiation

blocks rather than a generic block of END-Diff (Figure 2D).

(B) Schematic of the atacTFAP analysis demonstrating how H1 ESC and END ATAC-seq and RNA-seq data (n = 2 biological replicates) are integrated to predict

TF candidates during differentiation. Criteria for ATAC-seq peak analysis are FDR < 0.05 and log fold change R 1.0.

(C) 50 TF candidates ordered by atacTFAP score (top) and differential transcript expression (RNAdiff) between ESC and END (bottom).

(D) Schematic of the scRNA-seq CRISPRi screening experiment during END-Diff. Expression of dCas9-KRAB is induced (via the addition of doxycycline) only

after cells are pooled.

(E) tSNE and cluster assignments resulting from scRNA-seq CRISPRi experiment (n = 2 biological replicates).

(F) For each cluster, proportion of cells assigned to scramble gRNAs (p < 2.2E-16 versus random allocation; hypergeometric test).

(G) Heatmap of all 16,110 cells passing screen quality control. Genes shown are a subset of cluster markers with q < 0.05, FC > 1.5 in either direction, and

detection in at least 10% of cells in some cluster.

(H) Feature plots selected from among top marker transcripts in each cluster. See also Figures S1 and S2, and Tables S1, S2, and S3.
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Distinct Transcriptomic Signatures Are Observed
among END-Like Cells
The majority of candidate-specific gRNA-containing cells

reside in cluster 0, which contains most of the scramble-

gRNA-expressing cells and exhibits an overall END-like

expression signature (Figures 1F, 2B, and 2C). To identify

more subtle effects within cluster 0, we employed the

MIMOSCA modeling framework (Dixit et al., 2016), extracting

common effects from its output via sparse principal-compo-

nent analysis (PCA) (Zou et al., 2006). This approach reveals

a gene set affected across several screen candidates (Fig-

ure 3A). Although sparse PCA does not involve manual selec-

tion of genes, it highlights key transcripts of the transition

from pluripotency to END, including LEFTY1, LEFTY2,

FOXA2, CXCR4, and POU5F1. As the permutation scheme

of MIMOSCA does not account for batch effects within repli-

cates, we also formally tested all genes against all perturba-

tions via MAST (Finak et al., 2015). Cross-referencing the

results shows that most major perturbations (>30 genes;

FDR < 0.05) have directional effects on the END development

gene set, with CTCF as the only exception. This demonstrates

that atacTFAP analysis enriches for candidates important for

END development. Furthermore, repression of TF candidates

can lead to END-like states that are characterized by subtle

changes in developmentally relevant transcripts.

Within cluster 0 only, targeting of FOXA2 results in the largest

change, affecting 266 transcripts (Figure 3A). When FOXA2-

gRNA cells were differentiated independently in comparison to

scramble-gRNA cells, SOX17 expression levels were similar

(Figures 3B and 3C), suggesting differentiation of END despite

loss of FOXA2 in most cells. However, decreases in other END

markers, including CXCR4, HHEX, LEFTY1, LEFTY2, MIXL1,

CER1, GSC, and OTX2 (Table S4), revealed that the END state

might differ. Since FOXA2 targeting had the largest effect size

together with a seemingly preserved END state, we selected

this candidate for follow-up.
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Figure 2. Dissecting the Role of TGFb Mediators during END-Diff at the Single-Cell Level

(A) Cluster enrichment of gRNAs for each TF target. Heatmap shows Pr(cluster j gRNA) minus Pr(cluster j scramble).

(B) tSNE of cluster assignments and feature plots of gRNAs targeting specific TGFb mediator genes. Each dot represents one cell.

(C) Staging of END-Diff via Quant-seq (top; n = 2 biological replicates) compared with scRNA-seq CRISPRi cluster characteristics (bottom).

(D) Model of the effects of TGFb mediator perturbations on human END-Diff. See also Tables S1 and S3.

Cell Reports 27, 708–718, April 16, 2019 711



A

Scramble
gRNA

Selection &
differentiation

FOXA2
gRNA

B

C
Nuclei OCT4SOX17 FOXA2

−1.0 0 1.0

z-score

H3K27ac

266
255

239

206

198
159

99
79

60

46

32

T
M

E
M

14
B

C
X

C
R

4
K

R
T

18
LE

F
T

Y
2

S
10

0A
16

S
10

0A
10

TA
G

LN
2

W
F

D
C

2
M

Y
L9

P
R

K
C

D
B

P
F

Z
D

5
K

R
T

8
LM

C
D

1
M

IX
L1

N
P

P
B

A
C

K
R

3
T

T
N

LI
N

C
00

45
8

P
T

G
R

1
P

E
R

P
IS

G
15

P
R

K
C

Q
A

S
1

T
M

E
M

14
C

G
S

TO
1

R
D

X
C

LI
C

1
LE

F
T

Y
1

A
K

4
TA

G
LN

S
E

R
P

IN
E

2
H

S
P

B
1

P
P

IB
D

N
A

JC
15

H
H

E
X

C
E

R
1

M
D

H
2

H
S

P
90

B
1

K
R

T
19

H
S

PA
5

A
N

X
A

2
C

A
LM

1
S

10
0A

14
G

JA
1

A
C

T
B

P
D

H
B

C
H

C
H

D
6

F
O

X
A

2
M

Y
L6

G
T

F
2A

2
D

A
D

1
C

T
S

V
S

LC
3A

2
O

S
T

C
P

R
S

S
1

E
P

C
A

M
D

D
X

25
H

LA
C

R
P

L2
9

R
P

L2
7A

R
P

L1
8A

R
P

S
25

R
P

S
18

R
P

L3
6

R
P

S
16

R
P

L1
3

R
P

S
23

R
P

L2
3A

R
P

S
19

R
P

L8
R

P
S

27
R

P
LP

2
S

T
M

N
2

S
S

T
R

2
LI

N
C

01
46

7
LI

N
C

00
93

7
T

S
C

22
D

1
N

P
Y

1R
T

S
H

R
G

Y
P

C
C

O
L6

A
1

D
P

Y
S

L3
P

E
G

10
M

FA
P

4
P

O
U

5F
1

MAX_gRNAs
SOX11_gRNAs

ZIC3_gRNAs
USF1_gRNAs
PBX2_gRNAs
E2F6_gRNAs

ZNF263_gRNAs
ETV5_gRNAs

FOXM1_gRNAs
ZNF410_gRNAs

RARA_gRNAs
CREB3_gRNAs

NFE2L2_gRNAs
PITX2_gRNAs

NR5A2_gRNAs
YY1_gRNAs

SMAD4_gRNAs
FOXJ3_gRNAs
HBP1_gRNAs
HSF2_gRNAs
TGIF2_gRNAs

HMBOX1_gRNAs
NFYB_gRNAs

EOMES_gRNAs
ARNT_gRNAs

FOXH1_gRNAs
MNT_gRNAs

FOXA3_gRNAs
CTCF_gRNAs

MLXIP_gRNAs
GATA6_gRNAs

ATF7_gRNAs
SMAD2_gRNAs
ESRRA_gRNAs
SOX17_gRNAs
JUND_gRNAs
ATF3_gRNAs
OTX2_gRNAs

GATA4_gRNAs
FOXQ1_gRNAs

ZBTB33_gRNAs
RREB1_gRNAs
ZNF143_gRNAs

ELF3_gRNAs
SP1_gRNAs
GSC_gRNAs

MIXL1_gRNAs
FOXA2_gRNAs

-3 0 3

Log2 FC over scramble
(within C0)

Common effects across different TF perturbations

Number of differentially
expressed genes

D

E

ESC-TetOn-
dCas9-KRAB

S
cr

am
bl

e
gR

N
A

1
F

O
X

A
2

gR
N

A
2

F
O

X
A

2
gR

N
A

1

[0 - 1.50]

[0 - 2.00]

[0 - 3.00]

[0 - 2.00]

[0 - 1.50]

[0 - 2.00]

[0 - 3.00]

[0 - 1.50]

[0 - 2.00]

[0 - 3.00]

TTR

~60kb

ATACseq

H3K27ac

H3K27me3

ATACseq

H3K27ac

H3K27me3

ATACseq

H3K27ac

H3K27me3

FOXA2

F
O

X
A

2 
gR

N
A

S
cr

 g
R

N
A

E
nd

od
er

m
E

S
C

[0 - 2.00]

[0 - 1.00]

[0 - 1.50]

[0 - 6.00]

[0 - 2.00]

[0 - 1.00]

[0 - 1.50]

[0 - 2.00]

[0 - 1.00]

[0 - 1.50]

HHEXKIF11

~180kb

ATACseq

H3K27ac

H3K27me3

ATACseq

H3K27ac

H3K27me3

ATACseq

H3K27ac

H3K27me3

FOXA2

F
O

X
A

2 
gR

N
A

S
cr

 g
R

N
A

E
nd

od
er

m
E

S
C

1

4

3

2

Significant changes in FOXA2 
KD and during differentiation

(n = 1,814)

ESC  END END with
FOXA2 KD

Significant changes in FOXA2 
KD and during differentiation

(n = 1,277)

ATAC-seq

1

4
3

2

ESC  END  END with
FOXA2 KD

(legend on next page)

712 Cell Reports 27, 708–718, April 16, 2019



Loss of FOXA2 Results in Genome-Wide Chromatin
Changes in Human END
To better understand the genome-wide role of FOXA2 in human

END, we generated FOXA2-chromatin immunoprecipitation

sequencing (ChIP-seq) data in END, as well as H3K27ac ChIP-

seq and ATAC-seq in ESCs, scramble-gRNA END, and

FOXA2-gRNA END (Figure 3D; Table S4). To gain insight into

the developmental role of FOXA2, we focused on peaks that

were significantly altered in both END-Diff and FOXA2 knock-

down (n = 1,814 for H3K27ac and n = 1,277 for ATAC-seq;

Figure 3D). We clustered peaks and used genomic regions

enrichment of annotations tool (GREAT) (McLean et al., 2010)

to suggest possible functions (Table S4). GREAT analysis of

H3K27ac clusters 2 and 4, which increase during normal differ-

entiation and decrease upon FOXA2 knockdown, revealed

significant annotations for foregut epithelial, pancreatic, and

hindgut development (Table S4), suggesting that regions acti-

vated by FOXA2 are relevant to ENDderivatives. GREAT analysis

of all dynamic and FOXA2-dependent ATAC-seq peaks (Fig-

ure 3D, right) show they are disproportionately near genes

related to mouse pancreas hypoplasia and lung epithelium dif-

ferentiation. They are also close to genes expressed in mouse

END derivatives, including pharynx, thyroid, lung, trachea,

esophagus, liver, midgut, and hindgut. Individual clusters display

much lower enrichment signal, but when the analysis is restricted

to regions open in control END (clusters 1 and 2), most END an-

notations persist, consistent with a model in which FOXA2 es-

tablishes chromatin states relevant to differentiation toward

more mature lineages.

When surveying foregut-associated loci, we noticed loss of

H3K27ac and ATAC-seq signal at TTR and HHEX when

comparing FOXA2- versus scramble-gRNA END (Figure 3E).

HHEX also gained H3K27me3 signal in the FOXA2 knockdown

condition. Interestingly, the putative regulatory region that is

impacted by FOXA2 repression in the human HHEX locus over-

laps with a conserved foregut-specific cis-regulatory element

described in frogs (Rodriguez et al., 2001). Taken together,

loss of FOXA2 results in an altered chromatin landscape

following END-Diff, and further analysis reveals that putative reg-

ulatory regions are altered at specific foregut-associated loci.

Loss of FOXA2 Impairs Differentiation to Foregut END
and Subsequent Hepatic END, while Mid-Hindgut END
Differentiation Is Unaffected
Given the effects on chromatin state upon targeting FOXA2, we

hypothesized that one role of FOXA2 during human END-Diff is

to shape the chromatin landscape to control differentiation com-

petency. To test this, we adopted stepwise differentiation proto-

cols to guide FOXA2-gRNA END to foregut END (Hannan et al.,

2013) or mid-hindgut END (Múnera and Wells, 2017) in compar-

ison to scramble-gRNA END (Figure 4A). Foregut transcript

expression is lower following foregut END differentiation in the

FOXA2-gRNA condition (Figure 4B). However, following mid-

hindgut END differentiation, mid-hindgut transcript expression

is comparable or higher in FOXA2-gRNA cells (Figure 4C), and

both conditions result in generation of CDX2+/SOX17+mid-hind-

gut at high efficiency (Figure S3A). Taken together, these com-

parisons suggest that FOXA2-gRNA END may be less able to

differentiate into foregut END while remaining competent to

differentiate into mid-hindgut END.

To further test the ability of FOXA2-gRNA END cells to differ-

entiate toward derivatives of the foregut, we extended the step-

wise differentiation protocol to guide END through foregut END

to hepatic END (Figure 4D) (Hannan et al., 2013). Liver progenitor

transcripts are lower in the FOXA2-gRNA condition (Figure 4E).

Furthermore, decreased expression of FOXA2, HNF4A, HHEX,

and PROX1 was observed specifically in the FOXA2-gRNA con-

dition (Figures 4F and S3B), substantiating a role for FOXA2 in

hepatic END differentiation. Although this suggests cells have

differentiated to another END cell type, a panel of qPCR results

for other END lineage markers shows little difference except

for SOX17 (Figure S3C).

To discern whether the observed effects are cell autono-

mous, we analyzed hepatic END that was generated in a co-

culture differentiation of FOXA2-gRNA and scramble-gRNA

containing cells by scRNA-seq (Figure 4G). After initial quality

control (Figures S3D–S3F), analysis yields three main clusters

(Figure 4H). Clusters A (564 cells) and B (135 cells) express he-

patic END transcripts (Hannan et al., 2013) (Figures 4I, 4J, and

S3G; Table S5). In cluster C (204 cells), FOXA2 expression is

low and numerous liver-associated transcripts are downregu-

lated (Figures 4I, 4J, and S3G; Table S5). Annotation of cluster

C by Enrichr highlights similarity to a SOX17 overexpression

signature, and concordant with qPCR data (Figure S3C),

SOX17 is more highly expressed (ln FC, 0.13; q < 10-7; Table

S5). In cluster C, 92% of cells express FOXA2-gRNA,

compared with 1.6% in cluster A and 4.4% in cluster B. Clus-

ters A and B are enriched for scramble-gRNA (Figure 4K).

Global gene expression analysis of FOXA2-gRNA cells reveals

decreases in liver-associated transcripts in comparison to

scramble-gRNA (Figure 4L; Table S5), supporting a role of

FOXA2 in early hepatic differentiation. These analyses suggest

that altered END-like states could affect cellular competency

for differentiation of END to more mature foregut cell types.

Figure 3. Loss of FOXA2 Expression Results in Distinct Transcriptomic and Chromatin Changes within END

(A) A gene module affected across multiple perturbations. Within the main cluster only, log fold changes (color intensity) were estimated via MIMOSCA. Genes

were selected by running sparse PCA and thresholding the top component. Bars to the right show the number of differentially expressed genes by target

(MAST q < 0.05; cluster 0 only).

(B) Schematic of FOXA2 perturbation in conjunction with scramble-gRNA control conditions during differentiation.

(C) Immunofluorescence analysis for SOX17, OCT4, and FOXA2 of scramble and FOXA2 perturbed END. Nuclei are counterstained with Hoechst.

Scale bar: 100 mm.

(D) Summary of dynamic changes (FDR < 0.05, log fold change R 1.0) in H3K27ac (left) and chromatin accessibility as measured by ATAC-seq (right) between

ESC, scramble-gRNA control END, and FOXA2 perturbed END (n = 2 biological replicates).

(E) ATAC-seq, histone ChIP-seq, and TF ChIP-seq data at the TTR and HHEX loci showing decreased gene activity in FOXA2-gRNA containing END at foregut-

associated genes that are potentially regulated by FOXA2. See also Tables S1 and S4.
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DISCUSSION

We surmised that perturbation effects can manifest in different

ways: lethal effects would lower abundance; differentiation

blocks or alteration of cell identity would give rise to outlying

clusters; and smaller effects would appear in differential

expression testing. Of the candidates we screened, the top

10 candidates by atacTFAP score include both FOXA2 and

EOMES. FOXA2 repression has a large effect on overall

expression, and EOMES-gRNA-containing cells are depleted

in END. In addition, gRNAs targeting 5 of the top 10 atacTFAP

candidates differ significantly (FDR < 0.1; differential cluster

probability > 0.03) from the scramble gRNAs in terms of their

cluster assignments (SOX17, SMAD2, SMAD4, GATA6, and

FOXH1). This enrichment of END-relevant genes demonstrates

that motif analysis of ATAC-seq data can predict master regu-

lators of differentiation.

Furthermore, the differential cluster assignment results are

consistent with studies in vertebrate models that demonstrate

a critical role of TGFb signaling during vertebrate END develop-

ment (Chu et al., 2004; Heyer et al., 1999; Hoodless et al., 2001;

Vincent et al., 2003; Yamamoto et al., 2001; Conlon et al., 1994;

Kanai-Azuma et al., 2002; Tremblay et al., 2000) and destabiliza-

tion of the pluripotent state by SMAD2/4 downregulation in hu-

man cells (Avery et al., 2010; Sakaki-Yumoto et al., 2013). The

use of scRNA-seq allows for thorough profiling of these knock-

downs. As a technical note, future studies may achieve even

higher resolution by using a higher proportion of non-targeting

controls.

In addition to cluster assignment effects, we revealed

another class of atacTFAP candidates. These caused more

subtle transcriptomic alterations that likely would have re-

mained undetected in screens based on currently available

transgenic reporters of the END lineage, with an example be-

ing FOXA2. Study of Foxa2 has been hampered by lethality

due to defects in axial mesoderm development and gastrula-

tion in mice (Ang and Rossant, 1994; Dufort et al., 1998; Wein-

stein et al., 1994), and conditional knockouts of Foxa2 have

focused on later stages of gut tube development, some of

which required dual inactivation of Foxa2 and Foxa1 to mani-

fest developmental phenotypes (Lee et al., 2005a, 2005b;

Wan et al., 2005). Although FOXA2 associates with poised en-

hancers (Wang et al., 2015) and exhibits pioneer factor activity

(Donaghey et al., 2018; Iwafuchi-Doi et al., 2016; Li et al.,

2012), loss-of-function analyses provide more direct evidence

of its role in differentiation. Whether pioneer factor activity or

another molecular mechanism underlies control of cellular

competency by FOXA2 remains to be addressed. Our highly

controlled in vitro loss-of-function screen reveals cell-autono-

mous effects with correct species and factor specificity.

Importantly, the ability to differentiate into CDX2+ mid-hindgut

END progenitors remains intact, consistent with effects sug-

gested in Foxa2-knockout mouse studies (McKnight et al.,

2010).

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Cell Culture

d METHOD DETAILS

B Generation of pAAVS1-TetOn-dCas9-KRAB targeting

plasmid

B Generation of H1-AAVS1-TetOn-dCas9-KRAB hESCs

B gRNA cloning

B Lentivirus production

B Transduction of H1-AAVS1-TetOn-dCas9-KRAB

hESCs with gRNA lentivirus

B Definitive endoderm differentiation

B Foregut endoderm differentiation

B Mid-hindgut endoderm differentiation

B Hepatic endoderm differentiation

B Western blotting

B Immunofluorescence

B Quantitative PCR analysis and bulk cell RNA-

sequencing

Figure 4. Loss of FOXA2 Impairs Differentiation to Foregut END and Subsequent Hepatic END, while Mid-Hindgut END Differentiation

Is Unaffected

(A) Schematic of perturbation experiments for assessment of effect of FOXA2 repression on competency toward foregut and mid-hindgut END.

(B and C) qPCR analysis of transcripts in scramble or FOXA2 perturbed foregut END (B) and mid-hindgut END (C). Relative transcript expression was calculated

using the DDCT method; all transcripts were normalized to ACTB. Error bars correspond to SD; n = 3 biological replicates.

(D) Schematic of perturbation experiments during human hepatic END differentiation.

(E) qPCR analysis of transcripts in scramble or FOXA2 perturbed hepatic END. Relative transcript expression was calculated using the DDCT method; all

transcripts were normalized to ACTB. Error bars correspond to SD; n = 3 biological replicates.

(F) Immunofluorescence analysis for HNF4a and FOXA2 of scramble and FOXA2 perturbed hepatic END cells. Nuclei are counterstained with Hoechst.

Scale bar: 100 mm.

(G) Schematic of the scRNA-seq CRISPRi experiment during hepatic END differentiation. Scramble- and FOXA2-gRNA cells were co-cultured throughout

differentiation.

(H) Unsupervised cluster assignments visualized via tSNE. Each dot represents one cell (n = 2 biological replicates).

(I) Heatmap of cluster average expression of selected hepatic END-associated transcripts. Asterisk denotes MAST q < 0.05; ln FC > 0.25.

(J) Cellwise heatmap (n = 903 cells) containing all cluster markers withMAST q < 0.05, FC > 1.5 in either direction, and detection rate > 10% in at least one cluster.

Each transcript is standardized to have mean 0 and variance 1.

(K) Feature plots of scramble- and FOXA2-gRNA.

(L) Expression differences from single-cell data between FOXA2-gRNA versus scramble-gRNA containing hepatic END cells. All transcripts are displayed.

See also Figure S3 and Table S5.
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B Assay for Transposase-Accessible Chromatin (ATAC)

sequencing

B Chromatin Immunoprecipitation (ChIP) sequencing

B Perturbed definitive endoderm 10X Genomics library

preparation

B Perturbed hepatic endoderm Drop-seq library prepa-

ration

B gRNA amplification from 10X single-cell RNA-seq li-

braries

B Genomic DNA (gDNA) sequencing from transduced

cells for 10X library quality control

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Next-generation sequencing library data processing

B ATAC-seq Transcription Factor Activity Prediction

(atacTFAP) analysis

B Quantification of scRNA-seq CRISPRi data

B Quality control analysis of definitive endoderm scRNA-

seq CRISPRi data

B Cells excluded from scRNA-seq CRISPRi screen data

B Unsupervised analysis of definitive endoderm scRNA-

seq CRISPRi data

B Characterization of definitive endoderm scRNA-seq

CRISPRi cell clusters

B Characterization of gRNA effects within Cluster 0

B Quality control of gRNA effects

B Quantification of hepatic endoderm scRNA-seq

CRISPRi data

B Analysis of counts from hepatic endoderm scRNA-seq

CRISPRi data

d DATA AND SOFTWARE AVAILABILITY
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Supplemental Information can be found online at https://doi.org/10.1016/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, René

Maehr (rene.maehr@umassmed.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
H1 hESCs (WiCell, WA-01) were maintained in mTeSR1 (StemCell Technologies, Inc., 05850) on hES-qualified Matrigel (Corning,

354277) coated plates. Cells were fed daily and split with ReLeSR (StemCell Technologies, Inc., 05872) every 4-5 days in mTeSR1.

H1 hESCs were used to generate the targeted H1-AAVS1-TetOn-dCas9-KRAB hES cell line used in this study. H1-AAVS1-TetOn-

dCas9-KRAB hESCs were maintained similarly to H1 hESCs.

HEK293T/17 cells (ATCC, CRL-11268) were maintained in DMEM (Thermo, 11965) supplemented with 10% FBS (Thermo, 10437),

1X GlutaMAX (Thermo, 35050), 1X non-essential amino acids (NEAA; Thermo, 11140), and 1X Penicillin-Streptomycin (Corning,

30-002-CI). Cells were split with 0.25% Trypsin (Thermo, 25200) every 3-5 days.

METHOD DETAILS

Generation of pAAVS1-TetOn-dCas9-KRAB targeting plasmid
The pAAVS1-TetOn-dCas9-KRAB plasmid was generated through Gateway cloning of pAAVS1-TetOn-Dest plasmid (the destination

cassette derived from pHAGE-EF1a-DEST-HA-PGK-Puro is cloned in to PacI and NotI sites of pAAVS1-NDi-CRISPRi

[Addgene, 73497] (Mandegar et al., 2016) and pENTR2B-dCas9-KRAB plasmid). The dCas9-KRAB fusion was assembled by

combining the dCas9 from [Addgene, 60903] (Tanenbaum et al., 2014) with a KRAB repressor found in [Addgene, 50919] (Kearns

et al., 2014). The pAAVS1-TetOn-dCas9-KRAB and the pENTR2B-dCas9-KRAB plasmids are available at Addgene (Addgene

#115545 and 115547 respectively).

Generation of H1-AAVS1-TetOn-dCas9-KRAB hESCs
H1 hESCs were dissociated to single cells with TrypLE Express (Thermo, 12604013) and approximately 1 3 106 cells were washed

with PBS at 500 x g for 5min at RT. Transfectionwas performed using 4D-Nucleofector with Amax P3 primer cell 4D nucleofector X kit

(V4XP-3024) as per the manufacturer’s recommendations. 6 mg of target plasmid containing TetOn-dCas9-KRAB and 2 mg of AAVS1

ZnF nucleases were used for the targeting. Nucleofected H1 hESCswere distributed into 6 well plates containingmTeSR1 and 10 mM

Y-27632. After 24 hours, cells were treated with 50 ng/ml neomycin for 12 days. After selection, individual colonies were picked into

24 well plates and PCR genotyped for dCas9-KRAB, an AAVS1 wild-type allele, and an AAVS1 targeted allele using the primers and

PCR conditions listed in Table S1.

gRNA cloning
As maximal CRISPRi-mediated repression has been demonstrated using gRNAs proximal to the transcriptional start sites of genes

(Gilbert et al., 2014; Horlbeck et al., 2016; Mandegar et al., 2016), we chose to employ target-specific gRNA sequences from an

improved, predictive CRISPRi library (Horlbeck et al., 2016) in conjunction with 10 control scramble gRNA sequences (3 gRNA

per candidate, 160 gRNA total). CRISPRi gRNA sequences (Table S1) from the human CRISPRi v2 (hCRISPRi-v2) library (Horlbeck

et al., 2016) were cloned into the CROPseq-Guide-Puro gRNA backbone (Addgene, 86708) as described in Datlinger et al. (2017).

Briefly, CROPseq-Guide-Puro backbone was digested with BsmBI to remove the filler sequence necessary for cloning. gRNA se-

quenceswith 50 and 30 arms of homologywere ordered from ThermoScientific and cloned individually into the digested plasmid using

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Nikon Eclipse Ti Laser-scanning fluorescence

microscope

N/A N/A

Nikon SMZ1500 with Nikon Intensilight Epi-

fluorescence Illuminator.

N/A N/A

PDMS co-flow microfluidic droplet generation device Nanoshift custom built based on datafile 1

from Macosko et al. (2015)

Fragment analyzer high sensitivity DNA chip Advanced Analytical N/A

Nextseq500 Illumina N/A

10X Genomics Chromium Controller 10X Genomics N/A
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NEBuilder HiFi DNA AssemblyMaster Mix (NEB, E2621). Final individually cloned gRNA constructs were transformed into chemically

competent cells and prepped using a QIAprep Spin Miniprep Kit (QIAGEN, 27106) to generate DNA for downstream lentivirus

production.

Lentivirus production
Lentivirus was produced in HEK293T/17 cells (ATCC, CRL-11268). Briefly, sgRNA coding plasmids were transfected with lentiviral

packaging plasmids pHDM-G (DNASU #235), pHDM-Hgpm2 (DNASU #236), pHDM-tat1b (DNASU #237), and pRC/CMV-rev1b

(DNASU #246) using TransIT-293 transfection reagent (Mirus, 2700) in Opti-MEM (GIBCO, 31985) according to the manufacturer’s

instructions. Virus was harvested in mTeSR1 48 hours after transfection.

Transduction of H1-AAVS1-TetOn-dCas9-KRAB hESCs with gRNA lentivirus
H1-AAVS1-TetOn-dCas9-KRAB hESCs were split with TrypLE Express and incubated with sgRNA lentivirus for 3 hours in a low

attachment plate. Transduced cells were then plated onto hESC-qualified Matrigel-coated plates in mTeSR1 supplemented with

10 mM Y-27632. Beginning 2 days after transduction, cells were treated with 1 mg/ml puromycin (Invitrogen, A1113803) for 72 hours

in order to select for cells that were transducedwith sgRNAs. For END experiments, selected cells were treatedwith 500 ng/mL doxy-

cycline (Sigma, D9891) prior to differentiation.

For the END scRNA-seq CRISPRi screen of atacTFAP candidate TFs, 3 gRNAs targeting each of the top 50 candidates and 10

control scramble gRNAs were used per replicate. In order to maximize individual gRNA delivery, and to avoid confounding effects

of multiple different gRNA species within one cell, gRNA transductions were performed as an array prior to pooling, which has proven

effective for RNAi-based screening (Chen et al., 2014; Crotty and Pipkin, 2015). Following puromycin selection, equivalent cell

numbers from each gRNA transduction were pooled. After pooling, expression of dCas9-KRAB was induced in the pooled culture

with 500 ng/mL doxycycline for 48 hours before starting the differentiation. The analysis was performed at the END time-point in

2 biological replicates to ensure consistency within the results (160 gRNA conditions per replicate, 320 total individual transductions).

For the hepatic endoderm scRNA-seq CRISPRi experiment, H1-AAVS1-TetOn-dCas9-KRAB hESCs were individually transduced

with scramble-gRNA1 or FOXA2-gRNA2 lentivirus. Following puromycin selection, equivalent cell numbers from each gRNA trans-

duction were pooled and maintained in the presence of 500 ng/mL doxycycline for 48 hours prior to the start of differentiation. Cells

were co-cultured throughout the differentiation to hepatic endoderm in the presence of 500 ng/mL.

Definitive endoderm differentiation
H1-AAVS1-TetOn-dCas9-KRAB hESCs were split to single cells with TrypLE Express (Thermo, 12604). Cells were resuspended in

mTeSR1 supplemented with 10 mM Y27632 (Tocris, 1254) and 500 ng/mL doxycycline. 23 106 cells were plated into each well of a

6-well plate pre-coated with Growth Factor Reduced Matrigel (Corning, 356231). On Day 1, cells were fed with mTeSR1. On Day 2,

cells were fed with RPMI1640 (Thermo, 21870) supplemented with 0.2% Hyclone FBS (GE Healthcare, SH30070.03), 100 ng/mL Ac-

tivin A (R&D Systems, 338-AC-01M), 3 mM CHIR 99021 (Tocris, 4423), and 50 nM PI 103 (Tocris, 2930). On Days 3 and 4, cells were

fed with RPMI1640 supplemented with 0.2%Hyclone FBS, 100 ng/mL Activin A, and 250 nM LDN-193189 (Tocris, 6053). Media was

changed every 24 hours. For perturbation experiments and CRISPRi screening, the media was supplemented with 500 ng/mL doxy-

cycline daily.

Foregut endoderm differentiation
Differentiation to foregut endoderm was performed as described in Hannan et al. (2013) with modifications. H1-AAVS1-TetOn-

dCas9-KRAB hESCs were differentiated to END using the STEMdiff Definitive Endoderm Kit (StemCell Technologies, Inc., 05110)

following the manufacturer’s instructions with the addition of 500 ng/mL doxycycline daily. END was split to single cells with TrypLE

Express and resuspended in RPMI-1640 supplementedwith 1XB27minus vitamin A (B27-RPMI; Thermo, 12587010), 10 mMY27632,

50 ng/mLActivin A, and 500 ng/mL doxycycline. 13 106 cells were plated into eachwell of a 6-well plate pre-coatedwith 804G condi-

tioned-medium. Cells were fed for an additional 2 days with B27-RPMI supplemented with 50 ng/mL Activin and 500 ng/mL

doxycycline.

Mid-hindgut endoderm differentiation
Differentiation to mid-hindgut endoderm was performed as described in Múnera and Wells (2017) (human intestinal organoid

protocol) with the following modifications. H1-AAVS1-TetOn-dCas9-KRAB hESCs were differentiated to END using the STEMdiff

Definitive Endoderm Kit following the manufacturer’s instructions with the addition of 500 ng/mL doxycycline daily. END was split

to single cells with TrypLE Express and resuspended in RPMI-1640 supplemented with 2%Hyclone FBS (2%-RPMI; GE Healthcare,

SH30070.03), 10 mMY27632, 3 mMCHIR 99021, 500 ng/mL FGF4 (R&D Systems, 235-F4-025), and 500 ng/mL doxycycline. 23 106

cells were plated into each well of a 6-well plate pre-coated with 804G conditioned-medium. Cells were fed for an additional 3 days

with 2%-RPMI supplemented with 3 mM CHIR 99021, 500 ng/mL FGF4, and 500 ng/mL doxycycline.
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Hepatic endoderm differentiation
Differentiation to hepatic endoderm was performed as described in Hannan et al. (2013) with modifications. H1-AAVS1-TetOn-

dCas9-KRAB hESCs were first differentiated to foregut endoderm as above. Then cells were fed for 4 days with B27-RPMI supple-

mented with 20 ng/mL BMP4 (R&D Systems, 314-BP-050), 10 ng/mL FGF10 (R&D Systems, 345-FG-025), and 500 ng/mL

doxycycline.

Western blotting
H1-AAVS1-TetOn-dCas9-KRAB hESCs were treated with and without 500 ng/mL doxycycline for 48 hours. Cells were split with

TrypLE and pelleted at 300 x g for 5 minutes at RT. The cell pellet was lysed with RIPA buffer (10 mM Tris-Cl pH 8, 1 mM EDTA,

1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, and 1X protease inhibitors) on ice for 20-30 minutes and

sonicated for a few pulses to shear the non-soluble chromatin. Samples were spun at 13,000 rpm for 15 minutes at 4�C and the su-

pernatant was collected as total protein extract in a separate tube. Samples were run on precast SDS-PAGE gels (Biorad, 456-1084)

and after transfer onto PVDF membrane, stained with anti-HA (1:1000; Cell Signaling Technologies, 3724) and anti-GAPDH (1:1000;

R&D Systems, 2275-PC-100) antibodies.

Immunofluorescence
Cells were fixed with 10% formalin (Fisher, 032-060) for 30 min at room temperature. Fixed cells were incubated with 5% donkey

serum (Lampire, 7332100) in PBS supplemented with 0.2% Triton X-100 (PBST; Sigma, X100) for 45 minutes at room temperature.

Incubation with primary antibodies was performed overnight at 4C. Cells were washed 3 times with PBST for 5 minutes. Cells were

incubated with Alexa Fluor-conjugated secondary antibodies for 2 hours at room temperature in the dark. Cells were washed 3 times

with PBST for 5 minutes. Hoechst (Thermo, H3570) was used for nuclei staining. Fluorescent images were obtained on a Nikon

Eclipse Ti microscope. Primary antibodies used in this study include: SOX17 antibody (1:300; R&D Systems, AF1924), OCT3/4 anti-

body (1:100; Santa Cruz Biotechnology, sc5279), FOXA2 antibody (1:300; Millipore EMD, 07-633), CDX2 antibody (1:300; BioGenex,

MU392A-UC), HNF4A antibody (1:500; Abcam, ab41898), HHEX antibody (1:500; R&D Systems, MAB83771), TBX3 antibody (1:300;

Santa Cruz Biotechnology, sc17871), PROX1 antibody (1:300; R&D Systems, AF2727), EPCAM antibody (1:1000; Biolegend,

324202).

For quantification of END efficiency, both ESC and END were stained with SOX17 and OCT4 antibodies and Hoechst. Total cells

per well were counted based on Hoechst staining. ESC cells were counted as OCT4+, END cells were counted as SOX17+, and if a

cell did not stain for either, it was labeled as ‘‘Other.’’ The percentages of OCT4+ and SOX17+ cells were calculated for both ESC and

END. For ESC quantification, 3 random snapshots from 3 independent wells were used. For END quantification, 3 random snapshots

from 3 independent differentiations were used.

Quantitative PCR analysis and bulk cell RNA-sequencing
Total RNA was isolated using Trizol Reagent (Invitrogen, 15596-018) according to the manufacturer’s instructions. For quantitative

PCR analysis, 1 mg of total RNA was reverse-transcribed using SuperScript III First-Strand Synthesis System (Thermo, 18080051).

Resulting cDNA was utilized in qPCR reactions using specific primers (Table S1) in KAPA SYBR Fast Master Mix (Kapa Biosystems,

KK4600). Relative transcript expression was calculated using the DDCT method; all transcripts were normalized to ACTB. For qPCR

primer sequences, see Table S1.

Bulk RNA-sequencing library preparation of H1 hESC and differentiated hEND was performed following a published protocol

(Zhang et al., 2012). Briefly, 4 mg of total RNA was depleted of ribosomal RNA using Ribo-Zero rRNA Removal Kit (Epicenter,

MRZH116) and then converted to cDNA. Final sequencing libraries were generated using dUTP (Thermo, R0133) incorporation

and uracil-N-glycosylase (NEB, M0280) treatment to generate strand-specific RNA-seq libraries. The final libraries were sequenced

at paired-end on a Hi-Seq2000 platform. Bulk RNA-sequencing library preparation of the H1-AAVS1-TetOn-dCas9-KRAB hESC dif-

ferentiation time-course to hEND was performed using the QuantSeq 30 mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen,

015.96). Cells were differentiated in the presence of 500 ng/mL doxycycline and taken for analysis every 24 hours. The final libraries

were sequenced (single-end, 75) on a NextSeq500 platform.

Assay for Transposase-Accessible Chromatin (ATAC) sequencing
Samples were processed according to Buenrostro et al. (2013) with slight modifications. Briefly, approximately 50,000 cells were

pelleted at 750 x g for 15 minutes at 4�C. After the addition of lysis buffer (10 mM Tris-Cl pH 7.4, 10 mM NaCl, 3 mM MgCl2, and

0.1% IGEPAl CA-630), nuclei were pelleted at 750 x g for 15 minutes at 4�C and the supernatant was discarded. Transposase

reaction was performed at 37�C for 30 minutes. The purified, tagmented DNA was amplified for 9-10 cycles and size selected using

AMPure XP beads (Beckman Coulter, A63881) as follows: 0.55X volume of 2X concentrated AMPure beads was added to the ampli-

fied DNA and incubated for 5minutes at room temperature. The supernatant, containing low-molecular weight DNA, was collected in

a separate tube by removing the beads using a magnetic rack. 1X volume of AMPure beads was added to the supernatant and incu-

bated for 5min at room temperature. The beadswere washed twice with 75%ethanol and then air-dried. The final purified library was

eluted in EB buffer and sequenced (paired-end, 75-75) on a NextSeq500 or Hi-Seq2000 platform.
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Chromatin Immunoprecipitation (ChIP) sequencing
Approximately 3-5 million cells were used for each histone ChIP-seq experiment. Briefly, cells were cross-linked with 1% formalde-

hyde for 10minutes followed by quenching with 125 mM glycine for 4-5 minutes at room temperature. The cell pellet was lysed in cell

lysis buffer (20 mM Tris-HCl pH 8, 85 mM KCl, 0.5% NP-40) supplemented with 1X protease inhibitors (Roche, 11836170001) on ice

for 20minutes then spun at 5000 rpm for 10minutes. The nuclear pellet was resuspended in sonication buffer (10mMTris pH 7.5, 1%

NP-40, 0.5% sodium deoxycholate, 0.1%SDS, and 1X protease inhibitors) and incubated for 10minutes at 4�C. In order to achieve a

200-700 bp DNA fragmentation range, nuclei were sonicated using a Bronson sonifier (model 250) with the following conditions:

amplitude = 15%, time interval = 3min (total of 8-12 minutes) and pulse ON/OFF = 0.7 s/1.3 s. Chromatin was pre-cleared with Dy-

nabeads Protein A (Invitrogen, 10002D) for 1 hour and incubated with antibody on a rotating wheel overnight at 4�C. Antibodies
included: anti-H3K27ac (5 mg; Diagenode, C15410196), anti-H3K27me3 (5 mg; Millipore, 07-449), and anti-FOXA2 (8 mg; Millipore,

07-633). On the following day, 30-40 ml of Dynabeads Protein A was added to chromatin for 2-3 hours. The captured immuno-com-

plexes were washed as follows – 1x in low-salt buffer, 1x in high-salt buffer, 1x in LiCl salt buffer, and 1x in TE. The immuno-com-

plexes were eluted in ChIP-DNA elution buffer (10 mM Tris-HCl pH 8, 100 mM NaCl, 20 mM EDTA, and 1% SDS) for 20 minutes.

The eluted ChIP-DNA was reverse cross-linked overnight at 65�C, followed by proteinase K (Thermo, 25530049) treatment, RNase

A (Thermo, ENO531) treatment, and Phenol:Chloroform:Isoamyl alcohol extraction. The Illumina library construction steps were car-

ried out with 5-10 ng of purified DNA. During library construction, purification was performed after every step using QIAquick PCR

purification kit (QIAGEN, 28104) or QIAquick gel extraction kit (QIAGEN, 28706). The library reaction steps were as follows: end-

repair, 30 end A-base addition, adaptor ligation, and PCR amplification. The amplified libraries were size-selected for 200-450 bp

on a 2% agarose E-gel (Thermo, G402002) and sequenced (single-end, 75) on a NextSeq500 or Hi-Seq2000 platform.

Perturbed definitive endoderm 10X Genomics library preparation
�8000 cells were captured per replicate on a 10X Chromium device using a 10X V2 Single Cell 30 Solution kit (10X Genomics). All

protocols were performed following the manufacturer’s instructions. Final sequencing libraries were analyzed on a high sensitivity

DNA fragment analyzer chip (Advanced Analytical) to determine the average base pair size and final library concentrations were

determined with a Qubit High Sensitivity DNA assay kit (Thermo, Q32854). 10X genomics libraries were sequenced at paired-end

(26-50) on a Nextseq500 using a Nextseq500/550 High Output v2 75-cycle kit (Illumina, FC-404-2005).

Perturbed hepatic endoderm Drop-seq library preparation
Drop-seq was performed following the Drop-seq Laboratory Protocol version 3.1 (http://mccarrolllab.org/dropseq). Briefly, single

cell suspensions were resuspended at 13 105 cells/mL in PBS + 0.01%BSA (Sigma, A8412). The diluted cell suspension, barcoded

Oligo-dT beads (Chemgenes, MACOSKO-2011-10), and droplet generation oil (Biorad, 1864006) was run through a PDMS co-flow

microfluidic droplet generation device (Nanoshift, custom built based on the datafile 1 from Macosko et al. (2015) at flow rates of

4,000 mL per hour, 4,000 mL per hour, and 15,000 mL per hour, respectively. Droplet breakage, bead isolation, and cDNA synthesis

were performed as described (Kernfeld et al., 2018; Macosko et al., 2015). cDNA libraries were tagmented with Nextera XT DNA Li-

brary Preparation Kit (Illumina, FC-131-1024) and sequencing libraries were amplified and individually barcoded. Agencourt AMPure

XP beads (Beckman Coulter, A63881) were used for purification of cDNA and sequencing libraries according to the manufacturer’s

instructions. Final sequencing libraries were analyzed on a high sensitivity DNA fragment analyzer chip to determine the average

base-pair size and final library concentrations were determined with a Qubit High Sensitivity DNA assay kit (Invitrogen, Q32854).

Drop-seq libraries were sequenced at paired-end (20-50) on a Nextseq500 using a Nextseq500/550 High Output v2 75-cycle kit

(Illumina, FC-404-2005).

gRNA amplification from 10X single-cell RNA-seq libraries
In order to increase resolution of gRNA assignments to individual cells, gRNA amplification off the U6 promoter was performed, which

maintained UMI and cell barcode information following sequencing. 10 ng of final 10X genomics single-cell RNA-seq library was used

in two subsequent PCR reactions using HiFi HotStart ReadyMix (Kapa Biosystems, KK2600) in order to amplify gRNA sequences and

add on sequencing adaptors and multiplexing indices. Final gRNA amplification libraries were sequenced at paired-end (26-50) on a

Nextseq500 using a Nextseq500/550 High Output v2 75-cycle kit (Illumina, FC-404-2005). For primer sequences and PCR condi-

tions, see Table S1.

Genomic DNA (gDNA) sequencing from transduced cells for 10X library quality control
gDNA was isolated from both scRNA-seq CRISPRi replicates prior to doxycycline treatment (pre-dox, before differentiation) and

following differentiation in the presence of doxycycline. gDNA samples were amplified and sequenced for library quality control.

Briefly, gDNA isolation was performed using a DNeasy kit (QIAGEN, 69506). gRNA sequences were amplified with Q5 Hot Start

High-Fidelity 2x Master Mix (NEB, M0494) and specific primers as described (Datlinger et al., 2017). Final amplified libraries were

sequenced (single-end, 75) on a NextSeq500. Reads were aligned and exact matches were quantified using ScreenProcessing.

(Version numbers are unavailable, but ScreenProcessing used the Git version control system, and we installed code from commit

50628c7).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Next-generation sequencing library data processing
For processing of bulk RNA-seq data utilized in atacTFAP analysis, raw reads were trimmed 5bp from the head orientation and to

55 bp at the tail. Subsequently, reads were aligned with salmon version 0.8.2 to human reference transcriptome version GRCH37

using default parameters setting the flags -l A–posBias–gcBias–seqBias. Transcript and gene expression levels were then quantified

using the salmon output and the txImport (Soneson et al., 2015) R package. Subsequently, we removed all geneswith less than 3 (20th

percentile) or more than 27337.16 (99.5th percetnile) reads across the dataset. Differential expression analysis was performed using

DESeq2 (Love et al., 2014). Genes with a minimal expression level of 5 RPKM in at least 2 samples and a FDR threshold of 0.01 were

considered as differentially expressed.

For processing of ATAC-seq data, reads were aligned to the human reference genome hg19 using Bowtie 2 (Langmead and Salz-

berg, 2012) version 2.3.2 using default parameters and filtering duplicate reads. MACS2 in combination with the IDR framework was

used for peak calling and detection of regions of genomic enrichment using two replicates per condition with an IDR cutoff of 0.1.

(Modified from https://informatics.fas.harvard.edu/, Harvard University)

For processing of ChIP-seq data, reads were aligned to the human reference genome hg19 using Bowtie 2 (Langmead and Salz-

berg, 2012) version 2.3.2 using default parameters. Duplicate reads were filtered out and reads were extended to 200 bp. For peak

calling, MACS2 in combination with the IDR framework was utilized with two replicates per condition and an IDR cutoff of 0.1.

For differential ATAC-Seq or ChIP-Seq analysis, we used the R package diffbind in combination with DESeq2 for all IDR based

peak sets, requiring no overlap of peaks across conditions and using a DBA score based quantification.

For RNA-seq, ATAC-seq, and ChIP-seq data visualization, IGV tools (Thorvaldsdóttir et al., 2013) was used to generate .tdf files.

Quant-seq data were aligned using HISAT2 (Kim et al., 2015) v2.0.5 with hg19 as a reference and parameters ‘‘-p 12–rna-strand-

ness F.’’ Quantification used ESAT (Derr et al., 2016) v0.1with parameters ‘‘-wLen 100 -wOlap 50 -wExt 1000 -sigTest 0.01 -multimap

normal.’’ For ESAT quantification, RefSeq transcript annotations were downloaded from the UCSC table browser with the following

specifications: clade: Mammal; genome: Human; assembly: Feb. 2009 (GRCh37/hg19); group: Genes and Gene Predictions; track:

NCBI RefSeq; table: UCSC RefSeq (refGene); region: genome; output format: all fields from selected table. A negative binomial likeli-

hood ratio test was carried out using DESeq2 (Love et al., 2014) with full model having a separate fixed effect for each day, a

constant null model, and fitType = ‘‘local.’’ For heatmapping, expression was normalized to counts per million and transformed as

X0log2ðX + 1Þ. Rows were standardized and averaged by time point.

ATAC-seq Transcription Factor Activity Prediction (atacTFAP) analysis
In order to identify TFs that are likely relevant for the biology and fate of a particular cellular state, we performed regression analysis on

the ATAC-seq signal across the union set of all putative gene regulatory elements (GREs) in hESC, END, and beta cells (GEO:

GSM1978246, GSM1978247; mature endodermal cell population control) using predicted TF binding sites within each GRE as re-

gressors (Ziller et al., 2015).

More specifically, we performed TF motif matching using PWMmatrices obtained from JASPAR and HOCOMOCO employing the

PWMmatching tool FIMO (Grant et al., 2011) version 4.10.2 on the union peak set of hESC, END, and beta cells. In order to normalize

the distribution of predicted TFBS sites across peaks, we standardized the peak length of all ATACpeaks to 600 bp, extending 300 bp

in each direction from the peak center and used these regions for PWM matching. Subsequently, we only retained motif matches

below a significance of 5e-04 and log10-transformed the values multiplied by �1.

In addition, we computed the RPKMvalues across the union ATAC-seq peak set using the effective library sizes defined as the total

number of reads in peaks of the union peak set in each library as scaling factor with two replicates per condition. Lastly, we performed

quantile normalization across all replicates and subsequently averaged the quantile normalized signal per condition, giving rise to the

final dependent variable matrix. We then performed sparse partial least square regression with the R package spls (Chun and Ke-

lesx, 2010) and identified the unknown parameters K and eta by 5 fold cross-validation using a grid search across K = 2-20 and

eta = 0.1-0.9 keeping kappa fixed at 0.5 with the algorithm set to pls2 and fit = simpls. This identified K = 16 and eta = 0.1 as the

parameters with minimum cross-validation error. Finally, we used the difference in the estimated beta coefficients for each TF motif

between hESC and END as a measure for the relative importance of this factor for the biology/establishment/maintenance of the

hESC or END fate and defined this value as the atacTFAP score (Figure 1C; Table S2). We then further filtered the results for TFs

that were not expressed at least 5 RPKM in hESC or END and determined the log2 fold change between the two conditions as

the RNAdiff score (Figure 1C; Table S2). We then removed duplicate TFs (e.g., TFs with multiple motifs), retaining only the TF/motif

with the highest atacTFAP score and retained only one motif per TF. From this list, we selected 50 factors (Figure 1C; Table S2).

Quantification of scRNA-seq CRISPRi data
Reads from sequencing of scRNA-seq CRISPRi results, including gRNA sequences, were generated, aligned and quantified using

10X CellRanger version 2.1.0. The reference genome was hg19, augmented with the 4,542 base pair dCas9-KRAB fusion sequence

and the gRNARNA sequenceswith homology arms. Each additional sequencewas included on a separate chromosome. Each gRNA

sequence included the 20 unique base pairs as well as 200 bp on either side. For purposes of tagging, 50 bp on either side of the

unique gRNA sequence was marked as ‘‘exonic.’’ The entire dCas9-KRAB sequence was marked as exonic.
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gRNA amplification runs were processed separately from the full data. For the gRNA amplification runs, cell calling was ignored,

and barcodes were instead carried over from full data processing. Full data and gRNA amplification data were then merged within

replicates. To avoid double-counting individual UMIs, gRNA counts from full sequencing runs were erased and replaced with gRNA

counts from gRNA amplification sequencing. 17,234 cells were reported, with the median cell having 17,231 UMIs.

Quality control analysis of definitive endoderm scRNA-seq CRISPRi data
Analysis of count matrices from scRNA-seq CRISPRi data was carried out using R 3.4.3. Doublets were depleted by modeling the

amount of the highest expressed and second highest expressed gRNAs. Calling the highest gRNA count x and the second highest y,

quantile regressions of y on x were fitted targeting the 50th and 99th percentile to model single cells and doublets respectively. In-

tercepts were fixed at 0 and the 99th percentile (doublet) model attained a slope near 1, indicating roughly equal amounts for the

top two gRNAs. Log10 likelihood ratios (log10 LRs) were computed for each cell, assuming Poisson-distributed counts around

the regression estimate, and cells with log10 LR above 0.2 were excluded (730 cells). Quantile regressions of y on x were fitted

via the quantreg package version 5.35.

Each cell was then assigned to its highest expressed gRNA. After doublet depletion and gRNA assignment, each scramble gRNA

was tested against the other 9 scrambles within the DE samples using MAST (Finak et al., 2015) version 1.4.1 with a fixed effect for

replicate. All transcripts were tested, including dCas9-KRAB. FDR adjustment was applied to each gRNA separately.

Cells excluded from scRNA-seq CRISPRi screen data
In each replicate, genes appearing in only one cell were excluded. Cells with doublet-modeling log10 LR above 0.2 were excluded

(730 cells). Cells were excluded if no gRNAs were detected (29 cells). Cells assigned to scramble gRNA #5 were excluded based on

the high number of differentially expressed transcripts (88 cells). This left 548 negative control cells (3.4%), which is lower than ex-

pected but still within the range used by similar studies (Dixit et al., 2016). Ten gRNAs yielded exactly 0 counts in the END gDNA

ScreenProcessing results, and upon visualization of the RNA alignments, these were found to contain possiblemutations or targeting

errors (they were: ARNT_gRNA2, ATF3_gRNA3, CREB3_gRNA2, FOXA2_gRNA3, FOXA3_gRNA1, GATA4_gRNA1, GATA6_gRNA2,

JUND_gRNA2, TGIF2_gRNA1, ZNF263_gRNA2). Cells assigned to these gRNAs were excluded from downstream analysis

(634 cells). After all exclusions, 16,110 cells remained.

Unsupervised analysis of definitive endoderm scRNA-seq CRISPRi data
Normalization and unsupervised analysis were carried out using Seurat (Satija et al., 2015) version 2.3.0. Expression valueswere con-

verted to transcripts per 10,000 and log-transformed via X - > ln(1+X). 1,062 variable geneswere selected using a dispersionmeasure

based on the mean and coefficient of variation (CV) for each gene. Specifically, genes were binned by expression and a local median

was computed for each bin. Dispersion was measured as the ratio of the CV to the local median CV, and genes with dispersion > 0.5

were retained. gRNAs and dCas9-KRAB were excluded, and so were genes with log normalized expression outside the interval

[0.0125, 3].

Each gene’s log normalized expression was replaced with scaled residuals from a regression on the total number of UMIs, with the

regression fitted to one datum per cell. PCA was computed on the results, and the top 15 PCs were used as input for Barnes-Hut

t-stochastic neighbor embedding (Maaten and Hinton, 2008) and a Louvain algorithm variant (Waltman and van Eck, 2013). In the

Louvain algorithm, the resolution parameter was set to 0.075.

Characterization of definitive endoderm scRNA-seq CRISPRi cell clusters
P values for gRNA enrichment in each cluster were calculated by applying Fisher’s exact test to 4x2 tables, where each entry j, 1 of the

table contains the number of cells in cluster j where the gene was targeted and entry j, 2 of the table contains the number of cells in

cluster j with scramble guides. P values were FDR-adjusted across all targets by the method of Benjamini and Hochberg. Scramble

enrichment in cluster 0 was tested similarly for significance, using a null distribution with the same total number of scrambles distrib-

uted to so as to form the same percentage of each cluster.

Characterization of gRNA effects within Cluster 0
gRNA effects within the main cluster were estimated via MIMOSCA (Dixit et al., 2016) within Python 2.7.13. (Version numbers for

MIMOSCA were unavailable, but the software is tracked using the version control system Git, and we used code from commit

27199eb.) Raw counts were exported from R following quality control and unsupervised analysis. Expression data were normalized

and log-transformed within MIMOSCA, and genes were standardized. MIMOSCAwas run with a linear model using indicators for the

interaction between replicate and gRNA. Scramble gRNAs did not receive separate indicators, so the resulting coefficients represent

log fold change for each gRNA over the combined scrambles. MIMOSCA’s built-in EM-like correction of gRNA assignments was

applied. Genes with correlation across replicates less than 0.25 were excluded from downstream analysis.

To find common patterns among the MIMOSCA coefficients for each target, guides and replicates were combined via averaging.

Sparse PCA was run using the R package elasticnet version 1.1 (regularization parameter of 20), with the sparsity penalty on the
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gRNAs (Zou et al., 2006). Only one component was retained, as subsequent components were concentrated within a single target.

Genes for the heatmap were selected for having high loadings on PC1 (any gene whose loading exceeded 1/3 of the in absolute

value).

gRNA effects were also estimated by comparing cells assigned to each gRNA against cells assigned to scramble gRNAs. Testing

used the MAST package (Finak et al., 2015) (v1.4.1) with a fixed effect for the replicate. Tests were applied to the top 1000 genes

according to absolute log fold change, and P valueswere corrected for multiple testing using themethod of Benjamini andHochberg.

To correct for the effective number of tests (i.e., the number of genesG), the remaining G-1000 p valueswere conservatively assumed

to be 1.

Quality control of gRNA effects
To assess consistency of cluster assignments for different guides targeting the same locus, we computed two quantities across all

pairs of guides: the dissimilarity between assignments and the effect size. Dissimilarity was measured via the total variation norm

between Pr(Cluster j guide 1) and Pr(Cluster j guide 2). Effect size was measured as the maximum over i of Pr(cell not in 0 j guide i).

Then, smooth curves were computed to estimate dissimilarity given effect size. This was done separately for pairs of guides sharing a

target and pairs not sharing a target. Smooth curves are penalized cubic splines fit via least-squares.

To assess consistency of differential expression for different guides targeting the same locus, we computed two quantities across

all pairs of guides: the similarity in effects and the effect size. Similarity was measured via the percent of shared differentially ex-

pressed genes. Effect size was measured as the total number of differentially expressed genes. If two guides affected the same

gene in opposite directions, this counted twice toward the effect size and not toward the shared percentage. This was done sepa-

rately for pairs of guides sharing a target and pairs not sharing a target. Smooth curves are penalized cubic splines fit with a quasi-

Poisson response distribution.

Despite low statistical power for measuring individual transcripts in scRNA-seq, guides display an overall trend toward knockdown

(Figure S2G), with 75% of gRNAs knocking down their target (uncorrected p < 0.05, log FC < 0; Table S3), which is comparable to the

results previously described (Dixit et al., 2016).

Quantification of hepatic endoderm scRNA-seq CRISPRi data
Reads were aligned and quantified using the Drop-seq tools (Macosko et al., 2015) version 1.0 and the STAR aligner v2.4.2 (Dobin

et al., 2013). The reference genome was the same as for the END scRNA-seq CRISPRi data. During processing, cells were filtered to

have at least 1,000 genes. This yielded 1,165 cells.

Analysis of counts from hepatic endoderm scRNA-seq CRISPRi data
Analysis of hepatic endoderm scRNA-seq CRISPRi data was carried out using R 3.4.3. Cells were removed if no gRNAs were de-

tected (216 cells). Barcodes with multiple gRNAs (presumed doublets) were removed as in the END screening pool (46 cells

removed).

Normalization and unsupervised analysis were carried out using Seurat version 2.3.0 (Butler et al., 2018). Expression values were

converted to transcripts per 10,000 and log-transformed via X - > ln(1+X). Highly variable genes were selected using the same

expression criteria and dispersion measure as above, but requiring dispersion > = 1.5. The resulting list contained 631 genes.

Each gene’s log normalized expression was replaced with scaled residuals from a regression on the total number of UMIs, with

the regression fitted to one datum per cell. PCA was computed on the results, and the top 8 PCs were used as input for Barnes-

Hut t-stochastic neighbor embedding (Maaten and Hinton, 2008) and a Louvain algorithm variant (Waltman and van Eck, 2013). In

the Louvain algorithm, the resolution parameter was set to 0.2.

gRNA effects were estimated by comparing all FOXA2-gRNA cells with all scramble-gRNA cells. Testing used the MAST package

(Finak et al., 2015). P values were corrected for multiple testing using the method of Benjamini and Hochberg, and genes were re-

ported in the supplement as long as their q-values fell below 0.1. Cluster markers were computed similarly.

DATA AND SOFTWARE AVAILABILITY

The accession number for all NGS datasets generated in this paper is GEO: GSE127202. Code used for analysis will be released at

https://github.com/maehrlab prior to publication.
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