15 research outputs found

    Heterogeneity in the processing of ClC-5 mutants related to Dent disease

    Get PDF
    International audienceMutations in the electrogenic Cl-/H+ exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in X. laevis oocytes and in HEK293 cells of 9 previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC 5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were non-functional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss-of-function in Dent disease

    Kir4.1/Kir5.1 channel forms the major K + channel in the basolateral membrane of mouse renal collecting duct principal cells

    No full text
    International audienceK(+) channels in the basolateral membrane of mouse cortical collecting duct (CCD) principal cells were identified with patch-clamp technique, real-time PCR, and immunohistochemistry. In cell-attached membrane patches, three K(+) channels with conductances of approximately 75, 40, and 20 pS were observed, but the K(+) channel with the intermediate conductance (40 pS) predominated. In inside-out membrane patches exposed to an Mg(2+)-free medium, the current-voltage relationship of the intermediate-conductance channel was linear with a conductance of 38 pS. Addition of 1.3 mM internal Mg(2+) had no influence on the inward conductance (G(in) = 35 pS) but reduced outward conductance (G(out)) to 13 pS, yielding a G(in)/G(out) of 3.2. The polycation spermine (6 x 10(-7) M) reduced its activity on inside-out membrane patches by 50% at a clamp potential of 60 mV. Channel activity was also dependent on intracellular pH (pH(i)): a sigmoid relationship between pH(i) and channel normalized current (NP(o)) was observed with a pK of 7.24 and a Hill coefficient of 1.7. By real-time PCR on CCD extracts, inwardly rectifying K(+) (Kir)4.1 and Kir5.1, but not Kir4.2, mRNAs were detected. Kir4.1 and Kir5.1 proteins cellularly colocalized with aquaporin 2 (AQP2), a specific marker of CCD principal cells, while AQP2-negative cells (i.e., intercalated cells) showed no staining. Dietary K(+) had no influence on the properties of the intermediate-conductance channel, but a Na(+)-depleted diet increased its open probability by approximately 25%. We conclude that the Kir4.1/Kir5.1 channel is a major component of the K(+) conductance in the basolateral membrane of mouse CCD principal cells

    Long-term balancing selection and the genetic load linked to the self-incompatibility locus in Arabidopsis halleri and A. lyrata.

    No full text
    Balancing selection is a form of natural selection maintaining diversity at the sites it targets and at linked nucleotide sites. Due to selection favouring heterozygosity, it has the potential to facilitate the accumulation of a “sheltered” load of tightly linked recessive deleterious mutations. However, precisely evaluating the extent of these effects has remained challenging. Taking advantage of plant self-incompatibility as one of the best-understood examples of long-term balancing selection, we provide a highly resolved picture of the genomic extent of balancing selection on the sheltered genetic load. We used targeted genome resequencing to reveal polymorphism of the genomic region flanking the self-incompatibility locus in three sample sets in each of the two closely related plant species Arabidopsis halleri and A. lyrata, and used 100 control regions from throughout the genome to factor out differences in demographic histories and/or sample structure. Nucleotide polymorphism increased strongly around the S-locus in all sample sets, but only over a limited genomic region, as it became indistinguishable from the genomic background beyond the first 25-30 kb. Genes in this chromosomal interval exhibited no excess of mutations at 0-fold degenerated sites relative to putatively neutral sites, hence revealing no detectable weakening of the efficacy of purifying selection even for these most tightly linked genes. Overall, our results are consistent with the predictions of a narrow genomic influence of linkage to the S-locus, and clarify how natural selection in one genomic region affects the evolution of the adjacent genomic regions

    Characterization of the mouse ClC-K1/Barttin chloride channel

    No full text
    International audienceSeveral Cl(-) channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl(-) absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl(-)>Br(-)>NO3(-)>I(-). Single-channel recordings revealed a unit conductance of ~40pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~-65mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~20pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~+25mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253-260)

    Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells

    No full text
    International audienceTo gain molecular insight into kidney function, we performed a high-resolution quantitative analysis of gene expression in glomeruli and nine different nephron segments dissected from mouse kidney using Serial Analysis of Gene Expression (SAGE). We also developed dedicated bioinformatics tools and databases to annotate mRNA tags as transcripts. Over 800,000 mRNA SAGE tags were sequenced corresponding to >20,000 different mRNA tags present at least twice in at least one library. Hierarchical clustering analysis of tags demonstrated similarities between the three anatomical subsegments of the proximal tubule, between the cortical and medullary segments of the thick ascending limb of Henle's loop, and between the three segments constituting the aldosterone-sensitive distal nephron segments, whereas the glomerulus and distal convoluted tubule clusterized independently. We also identified highly specific mRNA markers of each subgroup of nephron segments and of most nephron segments. Tag annotation also identified numbers of putative antisense mRNAs. This database constitutes a reference resource in which the quantitative expression of a given gene can be compared with that of other genes in the same nephron segment, or between different segments of the nephron. To illustrate possible applications of this database, we performed a deeper analysis of the glomerulus transcriptome that unexpectedly revealed expression of several ion and water carriers; within the glomerulus, they were found to be preferentially expressed in the parietal sheet. It also revealed the major role of the zinc finger transcription factor Wt1 in the specificity of gene expression in the glomerulus. Finally, functional annotation of glomerulus-specific transcripts suggested a high proliferation activity of glomerular cells. Immunolabeling for PCNA confirmed a high percentage of proliferating cells in the glomerulus parietal sheet
    corecore