5,663 research outputs found

    Depinning in a Random Medium

    Full text link
    We develop a renormalized continuum field theory for a directed polymer interacting with a random medium and a single extended defect. The renormalization group is based on the operator algebra of the pinning potential; it has novel features due to the breakdown of hyperscaling in a random system. There is a second-order transition between a localized and a delocalized phase of the polymer; we obtain analytic results on its critical pinning strength and scaling exponents. Our results are directly related to spatially inhomogeneous Kardar-Parisi-Zhang surface growth.Comment: 11 pages (latex) with one figure (now printable, no other changes

    Fracture driven by a Thermal Gradient

    Full text link
    Motivated by recent experiments by Yuse and Sano (Nature, 362, 329 (1993)), we propose a discrete model of linear springs for studying fracture in thin and elastically isotropic brittle films. The method enables us to draw a map of the stresses in the material. Cracks generated by the model, imposing a moving thermal gradient in the material, can branch or wiggle depending on the driving parameters. The results may be used to compare with other recent theoretical work, or to design future experiments.Comment: RevTeX file (9 pages) and 5 postscript figure

    Conductance Fluctuations of Generic Billiards: Fractal or Isolated?

    Full text link
    We study the signatures of a classical mixed phase space for open quantum systems. We find the scaling of the break time up to which quantum mechanics mimics the classical staying probability and derive the distribution of resonance widths. Based on these results we explain why for mixed systems two types of conductance fluctuat ions were found: quantum mechanics divides the hierarchically structured chaotic component of phase space into two parts - one yields fractal conductance fluctuations while the other causes isolated resonances. In general, both types appear together, but on different energy scales.Comment: restructured and new figure

    Kondo effect in a one dimensional d-wave superconductor

    Full text link
    We derive a solvable resonant-level type model, to describe an impurity spin coupled to zero-energy bound states localized at the edge of a one dimensional d-wave superconductor. This results in a two-channel Kondo effect with a quite unusual low-temperature thermodynamics. For instance, the local impurity susceptibility yields a finite maximum at zero temperature (but no logarithmic-divergence) due to the splitting of the impurity in two Majorana fermions. Moreover, we make comparisons with the Kondo effect occurring in a two dimensional d-wave superconductor.Comment: 9 pages, final version; To be published in Europhysics Letter

    Applying the trigger review method after a brief educational intervention: potential for teaching and improving safety in GP specialty training?

    Get PDF
    <p>Background: The Trigger Review Method (TRM) is a structured approach to screening clinical records for undetected patient safety incidents (PSIs) and identifying learning and improvement opportunities. In Scotland, TRM participation can inform GP appraisal and has been included as a core component of the national primary care patient safety programme that was launched in March 2013. However, the clinical workforce needs up-skilled and the potential of TRM in GP training has yet to be tested. Current TRM training utilizes a workplace face-to-face session by a GP expert, which is not feasible. A less costly, more sustainable educational intervention is necessary to build capability at scale. We aimed to determine the feasibility and impact of TRM and a related training intervention in GP training.</p> Methods We recruited 25 west of Scotland GP trainees to attend a 2-hour TRM workshop. Trainees then applied TRM to 25 clinical records and returned findings within 4-weeks. A follow-up feedback workshop was held. <p>Results: 21/25 trainees (84%) completed the task. 520 records yielded 80 undetected PSIs (15.4%). 36/80 were judged potentially preventable (45%) with 35/80 classified as causing moderate to severe harm (44%). Trainees described a range of potential learning and improvement plans. Training was positively received and appeared to be successful given these findings. TRM was valued as a safety improvement tool by most participants.</p> <p>Conclusion: This small study provides further evidence of TRM utility and how to teach it pragmatically. TRM is of potential value in GP patient safety curriculum delivery and preparing trainees for future safety improvement expectations.</p&gt

    Multi-field Inflation with a Random Potential

    Full text link
    Motivated by the possibility of inflation in the cosmic landscape, which may be approximated by a complicated potential, we study the density perturbations in multi-field inflation with a random potential. The random potential causes the inflaton to undergo a Brownian motion with a drift in the D-dimensional field space. To quantify such an effect, we employ a stochastic approach to evaluate the two-point and three-point functions of primordial perturbations. We find that in the weakly random scenario the resulting power spectrum resembles that of the single field slow-roll case, with up to 2% more red tilt. The strongly random scenario, leads to rich phenomenologies, such as primordial fluctuations in the power spectrum on all angular scales. Such features may already be hiding in the error bars of observed CMB TT (as well as TE and EE) power spectrum and can be detected or falsified with more data coming in the future. The tensor power spectrum itself is free of fluctuations and the tensor to scalar ratio is enhanced. In addition a large negative running of the power spectral index is possible. Non-Gaussianity is generically suppressed by the growth of adiabatic perturbations on super-horizon scales, but can possibly be enhanced by resonant effects or arise from the entropic perturbations during the onset of (p)reheating. The formalism developed in this paper can be applied to a wide class of multi-field inflation models including, e.g. the N-flation scenario.Comment: More clarifications and references adde

    Life events and hemodynamic stress reactivity in the middle-aged and elderly

    Get PDF
    Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience

    High stakes and low bars: How international recognition shapes the conduct of civil wars

    Get PDF
    When rebel groups engage incumbent governments in war for control of the state, questions of international recognition arise. International recognition determines which combatants can draw on state assets, receive overt military aid, and borrow as sovereigns—all of which can have profound consequences for the military balance during civil war. How do third-party states and international organizations determine whom to treat as a state's official government during civil war? Data from the sixty-one center-seeking wars initiated from 1945 to 2014 indicate that military victory is not a prerequisite for recognition. Instead, states generally rely on a simple test: control of the capital city. Seizing the capital does not foreshadow military victory. Civil wars often continue for many years after rebels take control and receive recognition. While geopolitical and economic motives outweigh the capital control test in a small number of important cases, combatants appear to anticipate that holding the capital will be sufficient for recognition. This expectation generates perverse incentives. In effect, the international community rewards combatants for capturing or holding, by any means necessary, an area with high concentrations of critical infrastructure and civilians. In the majority of cases where rebels contest the capital, more than half of its infrastructure is damaged or the majority of civilians are displaced (or both), likely fueling long-term state weakness
    corecore