808 research outputs found

    Estimating mine planning software utilization for decision-making strategies in the South African gold mining sector.

    Get PDF
    The work presented in this paper is part of a PhD research study in the School of Mining Engineering at the University of the Witwatersrand.This paper discusses a new methodology for defining and measuring mine planning software utilization in the South African gold mining sector within an evolving data-set framework. An initial data-set showing the mine planning software providers, their corresponding software solutions, as well as the software capabilities and information on the number of licences was collected and compiled in 2012 in an online database for software utilized in the South African mining industry. Details of the database development and implementation were published in the Journal of the Southern African Institute of Mining and Metallurgy in 2013. In 2014 the data-set was updated with additional and new information. Using the 2012 and 2014 timestamps, a methodology for estimating the software utilization was developed. In this methodology, the three variables of commodity, functionality, and time factor were used to define and measure the software utilization in order to ultimately inform decision-making strategies for optimal software utilization. Using six different functionalities, namely Geological Data Management, Geological Modelling and Resource Estimation, Design and Layout, Scheduling, Financial Valuation, and Optimization, utilization in the gold sector was measured. This paper presents the methodology employed for measuring the mine planning software utilization. The methodology is useful for stakeholders reviewing existing software combinations or intending to purchase new software in the near future and who want to estimate the comparative attractiveness of a certain software package. These stakeholders include mining companies, consulting companies, educational institutions, and software providers. The work presented in this paper is part of a PhD research study in the School of Mining Engineering at the University of the Witwatersrand.MvdH2017http://www.saimm.co.za/publications/journal-paper

    A Recombinant PvpA Protein-Based Diagnostic Prototype for Rapid Screening of Chicken Mycoplasma gallisepticum infections

    Get PDF
    Cataloged from PDF version of article.Mycoplasma gallisepticum is the primary agent of chronic respiratory disease causing important economic losses in the poultry industry. Serological monitoring is essential to maintain mycoplasma-free breeder flocks and often complicated by the cross-reactions between different mycoplasma species. To overcome serological cross-reactions, a large fragment of the M. gallisepticum PvpA cytadhesin, species-specific surface-exposed protein, was produced in E. coli as a recombinant protein (rPvpA336) and used as a potential diagnostic antigen. The rPvpA336 protein possesses 336 mycoplasma-specific amino acids with relative molecular weight of 44 kDa. A deletion region of 37 amino acids was identified when compared to the wild-type PvpA protein. Immunoreactivity of the rPvpA336 protein has been demonstrated by Western blot analysis with M. gallisepticum-positive and -negative chicken sera. Furthermore, an enzymatic rapid immunofiltration assay (ERIFA) prototype based on the rPvpA336 protein has been developed and its species-specific detection capability has been demonstrated by using M. gallisepticum and/or M. synoviae-positive and -negative chicken sera. In addition to its species-specificity, the ERIFA prototype presents certain advantages such as rapidity, field-applicability and cost-effectiveness. Therefore, these advantages would make the prototype a species-specific rapid diagnostic tool of choice in the field and limited laboratory conditions for screening M. gallisepticum infections. © 2007 Elsevier B.V. All rights reserved

    Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    Get PDF
    Abstract: This paper presents an experimental investigation of two different magnetorheological ( MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

    Inadequate Loading Stimulus on ISS Results in Bone and Muscle Loss

    Get PDF
    INTRODUCTION Exercise has been the primary countermeasure to combat musculoskeletal changes during International Space Station (ISS) missions. However, these countermeasures have not been successful in preventing loss of bone mineral density (BMD) or muscle volume in crew members. METHODS We examined lower extremity loading during typical days on-orbit and on Earth for four ISS crew members. In-shoe forces were monitored using force-measuring insoles placed inside the shoes. BMD (by DXA), muscle volumes (by MRI), and strength were measured before and after long-duration spaceflight (181 +/- 15 days). RESULTS The peak forces measured during ISS activity were significantly less than those measured in 1g for the same activities. Typical single-leg loads on-orbit during walking and running were 0.89 +/- 0.17 body weights (BW) and 1.28 +/- 0.18 BW compared to 1.18 +/- 0.11 BW and 2.36 +/- .22 BW in 1g, respectively [2]. Crew members were only loaded for an average of 43.17 +/- 14.96 min a day while performing exercise on-orbit even though 146.8 min were assigned for exercise each day. Areal BMD decreased in the femoral neck and total hip by 0.71 +/- 0.34% and 0.81 +/- 0.21% per month, respectively. Changes in muscle volume were observed in the lower extremity (-10 to -16% calf; -4 to -7% thigh) but there were no changes in the upper extremity (+0.4 to -0.8%). Decrements in isometric and isokinetic strength at the knee (range: -10.4 to -24.1%), ankle (range: -4 to -22.3%), and elbow (range: -7.5 to - 16.7%) were also observed. Knee extension endurance tests showed an overall decline in total work (-14%) but an increased resistance to fatigue post-flight. DISCUSSION AND CONCLUSIONS Our findings support the conclusion that the measured exercise durations and/or loading stimuli were insufficient to protect bone and muscle health

    A study of the role of root morphological traits in growth of barley in zinc-deficient soil

    Get PDF
    Zinc (Zn) deficiency reduces crop yields globally. This study investigated the importance of root morphological traits, especially root hairs, in plant growth and Zn uptake. Wild-type barley (Hordeum vulgare) Pallas and its root-hairless mutant brb were grown in soil and solution culture at different levels of Zn supply for 16 d. Root morphological traits (root length, diameter, and surface area) were measured using the WinRHIZOPro Image Analysis system. In soil culture, Pallas had greater shoot dry matter, shoot Zn concentration, shoot Zn content, and Zn uptake per cm2 root surface area than brb, primarily under zinc deficiency. Both Pallas and brb developed longer roots under Zn deficiency. Development of root hairs was not affected by plant Zn status. In solution culture, there were no significant genotypic differences in any of the parameters measured, indicating that mutation in brb does not affect growth and Zn uptake. However, both Pallas and brb developed longer and thinner roots, and root hair growth was less than in soil culture, and was not affected by plant Zn status. The better growth and greater Zn uptake of Pallas compared with brb in Zn-deficient soil can be attributed primarily to greater root surface area due to root hairs in Pallas rather than other root morphological differences

    Foot Reaction Forces during Long Duration Space Flight

    Get PDF
    Musculoskeletal changes, particularly in the lower extremities, are an established consequence of long-duration space flight despite exercise countermeasures. It is widely believed that disuse and reduction in load bearing are key to these physiological changes, but no quantitative data characterizing the on-orbit movement environments currently exist. Here we present data from the Foot Experiment (E318) regarding astronaut activity on the ground and on-orbit during typical days from 4 International Space Station (ISS) crew members who flew during increments 6, 8, 11, and 12

    Using online photovoice and community-based participatory research to understand facilitators and barriers to online distance education during COVID-19

    Get PDF
    In this study, we used online photovoice and community-based participatory research to understand and address facilitators and barriers to online distance education for college students in Turkey. Out of 260 students who consented to the study, 240 shared the most important facilitator, 190 shared the most important barriers, and 190 completed our contextual questions related to their education. We used online interpretative phenomenological analysis to identify key facilitators and barriers. Ten main facilitator themes emerged, including advantages of using Internet and technology (n = 104; 43%); enjoyable feelings (n = 61; 25%); saving time (n = 37; 15%); and social support (n = 28; 12%). Nine main barrier themes emerged, including challenges of online education (n = 51; 31%); psychopathology and unenjoyable feelings, thoughts, and bodily sensations (n = 37; 19%); Internet problems (n = 34; 18%); and COVID-19 restrictions (n = 30; 16%). © 2023 Open and Distance Learning Association of Australia, Inc

    Using the Enhanced Daily Load Stimulus Model to Quantify the Mechanical Load and Bone Mineral Density Changes Experienced by Crew Members on the International Space Station

    Get PDF
    Despite the use of exercise countermeasures during long-duration space missions, bone mineral density (BMD) and predicted bone strength of astronauts continue to show decreases in the lower extremities and spine. This site-specific bone adaptation is most likely caused by the effects of microgravity on the mechanical loading environment of the crew member. There is, therefore, a need to quantify the mechanical loading experienced on Earth and on-orbit to define the effect of a given "dose" of loading on bone homeostasis. Gene et al. recently proposed an enhanced DLS (EDLS) model that, when used with entire days of in-shoe forces, takes into account recently developed theories on the importance of factors such as saturation, recovery, and standing and their effects on the osteogenic response of bone to daily physical activity. This algorithm can also quantify the tinting and type of activity (sit/unload, stand, walk, run or other loaded activity) performed throughout the day. The purpose of the current study was to use in-shoe force measurements from entire typical work days on Earth and on-orbit in order to quantify the type and amount of loading experienced by crew members. The specific aim was to use these measurements as inputs into the EDLS model to determine activity timing/type and the mechanical "dose" imparted on the musculoskeletal system of crew members and relate this dose to changes in bone homeostasis

    Betatrophin levels are related to the early histological findings in nonalcoholic fatty liver disease

    Get PDF
    Betatrophin, a liver hormone, regulates glucose and lipid metabolism. We investigated the betatrophin levels in nonalcoholic fatty liver disease (NAFLD) and searched for any relationship with histological severity and metabolic parameters. Fifty males with NAFLD [Nonalcoholic Steatohepati-tis (NASH) (n = 32); non-NASH (n = 18)] and 30 healthy controls were included. Plasma betatrophin was measured by ELISA method. Insulin sensitivity was assessed by HOMA-IR index. Histological features were scored by the semi quantitative classification and combined as the NAFLD activity score (NAS). Betatrophin levels in the non-NASH group were significantly higher than the controls. Betatrophin was positively correlated to the age, waist circumference, total cholesterol, triglycerides, LDL cholesterol, glucose, insulin, HOMA-IR index and gamma glutamyl transpeptidase levels, and negatively correlated to the steatosis and NAS. In the stepwise linear regression analysis, the triglyceride (β = 0.457, p < 0.001), glucose (β = 0.281, p = 0.02) and NAS (β = −0.260, p = 0.03) were the independent determinants of betatrophin. Betatrophin levels are higher in the early stages of NAFLD and tend to decrease when the disease progresses. This could be an important preliminary mechanistic finding to explain the increased frequency of glucose intolerance during the course of NAFLD
    corecore