94 research outputs found
Cerebrospinal Fluid Dendritic Cells Infiltrate the Brain Parenchyma and Target the Cervical Lymph Nodes under Neuroinflammatory Conditions
BACKGROUND: In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However, there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we performed in vivo transfer experiments in rats suffering from experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester (CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral lymph nodes were assessed for the presence of microspheres(+) APCs or CFSE(+) DCs by immunohistology and/or FACS analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte glycoprotein, a major immunogenic myelin antigen. CONCLUSIONS/SIGNIFICANCE: Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the immune responses that develop within and outside the inflamed CNS
Über eine Klasse polynomialer Scharen selbstadjungierter Operatoren im Hilbertraum
HEK293A cells expressing either mouse MOG (mMOG) or rat MOG (rMOG) C terminally tagged with EGFP. (DOCX 2792Â kb
Oligodendrocytes: biology and pathology
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so
B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity
<p>Abstract</p> <p>Background</p> <p>The etiology of the neurogenerative disease multiple sclerosis (MS) is unknown. The leading hypotheses suggest that MS is the result of exposure of genetically susceptible individuals to certain environmental factor(s). Herpesviruses and human endogenous retroviruses (HERVs) represent potentially important factors in MS development. Herpesviruses can activate HERVs, and HERVs are activated in MS patients.</p> <p>Results</p> <p>Using flow cytometry, we have analyzed HERV-H Env and HERV-W Env epitope expression on the surface of PBMCs from MS patients with active and stable disease, and from control individuals. We have also analyzed serum antibody levels to the expressed HERV-H and HERV-W Env epitopes. We found a significantly higher expression of HERV-H and HERV-W Env epitopes on B cells and monocytes from patients with active MS compared with patients with stable MS or control individuals. Furthermore, patients with active disease had relatively higher numbers of B cells in the PBMC population, and higher antibody reactivities towards HERV-H Env and HERV-W Env epitopes. The higher antibody reactivities in sera from patients with active MS correlate with the higher levels of HERV-H Env and HERV-W Env expression on B cells and monocytes. We did not find such correlations for stable MS patients or for controls.</p> <p>Conclusion</p> <p>These findings indicate that both HERV-H Env and HERV-W Env are expressed in higher quantities on the surface of B cells and monocytes in patients with active MS, and that the expression of these proteins may be associated with exacerbation of the disease.</p
Mechanisms of normal appearing corpus callosum injury related to pericallosal T1 lesions in multiple sclerosis using directional diffusion tensor and (1)H MRS imaging
Objectives: To investigate the extent of tissue damage in a region of normal appearing corpus callosum (NACC) for different forms of multiple sclerosis (MS) using diffusion tensor and proton magnetic resonance (MR) spectroscopic imaging. Methods: A total of 47 patients with MS and 15 controls were included. Regions of interest from the NACC were manually segmented using high resolution anatomical images. Diffusion tensor eigenvalues and metabolite ratio of N-acetyl-aspartate (NAA) to creatine/phosphocreatine (Cr) were calculated in the NACC region. Results: Increased apparent diffusion coefficients (ADCs) and decreased anisotropy were observed in the NACC for patients with MS relative to the control subjects. These resulted from increased diffusion tensor eigenvalues perpendicular to the maximum diffusion direction. The NAA:Cr ratio was decreased in the NACC for patients with MS relative to the control subjects. Significant correlations between pericallosal T1 lesion load and MR modalities in the NACC were observed for patients with relapsing remitting/secondary progressive MS (RR/SPMS), but not for patients with primary progressive MS (PPMS). Conclusion: This study provides further insight into changes in the ADC and diffusion anisotropy based on the diffusion tensor eigenvalues for patients with MS. The changes in the diffusion tensor eigenvalues and NAA:Cr ratio in the NACC for patients with RR/SPMS suggest axonal injury and/or dysfunction induced by wallerian degeneration. The lack of correlation between these variables in the NACC and focal MS lesions for patients with PPMS further supports intrinsic differences related to tissue injury between these subtypes of MS
Role of lipid interactions in autoimmune demyelination
AbstractA morphological transformation involving loss of adhesion between myelin lamellae and formation of myelin vesicles has been described as a mechanism for demyelination in multiple sclerosis and marmoset experimental allergic encephalomyelitis (EAE). Although protein interactions are involved in maintaining normal myelin structure, we describe here how lipids contribute to myelin stability and how lipid changes in EAE, including increases in lipid polyunsaturation and negatively charged phosphatidylserine (PS), promote demyelination. Three physico-chemical techniques were used to identify these changes: (1) Langmuir monolayer isotherms indicated that EAE white matter lipids were significantly more ‘expanded’ (fluid) than controls. (2) NMR spectroscopy indicated that EAE myelin lipids were more polyunsaturated than controls. (3) High-performance liquid chromatography (HPLC) with an evaporative light scattering detector indicated increased PS in EAE compared to controls, while sphingomyelin (SM), sulfatides and phosphatidylcholine (PC) were decreased. We present a physical model considering electrostatic, van der Waals and undulation forces to quantify the effect of these changes on myelin adhesion at the extracellular interface. Taken together, the isotherm, NMR, HPLC and modeling results support a mechanism for autoimmune demyelination whereby the composition of myelin lipids is altered in a manner that increases myelin fluidity, decreases myelin adhesion, increases membrane curvature, and promotes vesiculation
- …