24 research outputs found

    Analyzing the role of the p130Cas SH3 domain in p130Cas-mediated signaling

    No full text
    The adaptor protein p130Cas (CAS, BCAR1) represents a nodal signaling platform for integrin and growth factor receptor signaling, and influences normal development and tissue homeostasis. Its altered expression drives many pathological conditions including tumor growth, metastasis and drug resistance in many cancer types. How p130Cas contributes to many of these pathologies is still poorly understood. Therefore, the overall aim of my PhD work was to provide new insights to p130Cas signaling and its regulation. The SH3 domain is indispensable for p130Cas signaling, but the ligand binding characteristics of the p130Cas SH3 domain, and the structural determinants of its regulation were not well understood. To be able to study various aspects of p130Cas signaling we identified an atypical binding motif in p130Cas SH3 domain by establishing collaborations with Dr Veverka (Structural biology) and Dr Lepšík (Computational biochemistry; Academy of Sciences, CZ) which gave new insight into this binding interface. Through these collaborations I generated chimeras of p130Cas SH3 domain with its ligands for structural NMR analysis and learned how to visualize and analyze structures. Furthermore, my work expanded our knowledge of p130Cas SH3 ligand binding regulation and led to a novel model of Src-p130Cas- FAK..

    Analyzing the role of the p130Cas SH3 domain in p130Cas-mediated signaling

    No full text
    The adaptor protein p130Cas (CAS, BCAR1) represents a nodal signaling platform for integrin and growth factor receptor signaling, and influences normal development and tissue homeostasis. Its altered expression drives many pathological conditions including tumor growth, metastasis and drug resistance in many cancer types. How p130Cas contributes to many of these pathologies is still poorly understood. Therefore, the overall aim of my PhD work was to provide new insights to p130Cas signaling and its regulation. The SH3 domain is indispensable for p130Cas signaling, but the ligand binding characteristics of the p130Cas SH3 domain, and the structural determinants of its regulation were not well understood. To be able to study various aspects of p130Cas signaling we identified an atypical binding motif in p130Cas SH3 domain by establishing collaborations with Dr Veverka (Structural biology) and Dr Lepšík (Computational biochemistry; Academy of Sciences, CZ) which gave new insight into this binding interface. Through these collaborations I generated chimeras of p130Cas SH3 domain with its ligands for structural NMR analysis and learned how to visualize and analyze structures. Furthermore, my work expanded our knowledge of p130Cas SH3 ligand binding regulation and led to a novel model of Src-p130Cas- FAK..

    Analýza úlohy SH3 domény proteinu p130Cas v jeho signalizaci

    No full text
    IN CZECH Adaptorový protein p130Cas (CAS, BCAR1) propojuje signalizaci od integrinových receptorů s receptory růstových faktorů a ovlivňuje správný embryonální vývoj a tkáňovou homeostázu. Jeho změněná exprese může vyvolat mnoho patologických stavů, včetně nádorového bujení, metastazování a rezistence vůči různým protinádorovým lékům. Molekulární mechanismy, jakými p130Cas přispívá k různým patologickým stavům nejsou zatím jednoznačně popsány. Cílem mé doktorské práce bylo tedy poskytnout nové poznatky o signalizaci p130Cas a o její regulaci. Doména SH3 je nepostradatelná pro signalizaci proteinu p130Cas, ale její vazebné preference/regulace nebyly dosud přesně charakterizovány ani strukturně popsány. Proto jsme začali spolupracovat se skupinou Dr. Veverky (Strukturní biologie) a Dr. Lepšíkem (Výpočetní biochemie, AV ČR). S jejich pomocí jsme pak připravili fúzní chiméry SH3 domény proteinu p130Cas se svými ligandy a provedli strukturní analýzu NMR, která nám pomohla strukturně popsat atypický vazebný motiv SH3 domény proteinu p130Cas. Díky této spolupráci jsem se navíc naučil, jak tyto struktury vizualizovat a analyzovat. Tato práce rozšířila naše znalosti o regulaci vazby mezi p130Cas SH3 a jejími ligandy a dále vedla k vylepšenému modelu vazby mezi Src-p130Cas-FAK. Naše snaha sledovat aktivitu...The adaptor protein p130Cas (CAS, BCAR1) represents a nodal signaling platform for integrin and growth factor receptor signaling, and influences normal development and tissue homeostasis. Its altered expression drives many pathological conditions including tumor growth, metastasis and drug resistance in many cancer types. How p130Cas contributes to many of these pathologies is still poorly understood. Therefore, the overall aim of my PhD work was to provide new insights to p130Cas signaling and its regulation. The SH3 domain is indispensable for p130Cas signaling, but the ligand binding characteristics of the p130Cas SH3 domain, and the structural determinants of its regulation were not well understood. To be able to study various aspects of p130Cas signaling we identified an atypical binding motif in p130Cas SH3 domain by establishing collaborations with Dr Veverka (Structural biology) and Dr Lepšík (Computational biochemistry; Academy of Sciences, CZ) which gave new insight into this binding interface. Through these collaborations I generated chimeras of p130Cas SH3 domain with its ligands for structural NMR analysis and learned how to visualize and analyze structures. Furthermore, my work expanded our knowledge of p130Cas SH3 ligand binding regulation and led to a novel model of Src-p130Cas- FAK...Katedra buněčné biologieDepartment of Cell BiologyPřírodovědecká fakultaFaculty of Scienc

    The role of Src family kinases in RNA processing

    No full text
    Until now, a lot of information have been obtained about the role of Src family kinases in the cytoplasm or at the plasma membrane and their interactions with growth factor receptors or focal adhesion complexes. Their functional importance at the perinuclear membrane, or even inside the nucleus, however, has not been well characterized. This work, using available information, pointed at the fact that Src family kinases can be found in the nucleus. This opens a new field of Src kinases action, such as in RNA metabolism, considering that it has been assumed that their activity is limited to the cytoplasmic compartment. This work summarizes the current knowledge that hints to Src family kinases dependent network of regulation of RNA metabolism; Src family kinases have pleiotropic effects not only on the RNA binding proteins, but also on the remodeling of chromatin structure. These kinases affect by direct interactions with other proteins transport, splicing or RNA stability and gene expression. This summary suggests that Src family kinases could regulate RNA metabolism on many levels

    The search for novel interaction partners of SH3 domain of an adaptor protein p130Cas

    Get PDF
    Protein p130Cas is the major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. P130Cas plays an important role in invasiveness and metastasis of Src-transformed cells. In breast cancer patients, high p130Cas levels are associated with higher recurrence of disease, poor response to tamoxifen treatment and lower overall survival. In non-transformed cells, after the stimulation of integrins, protein p130Cas is phosphorylated in substrate domain affecting cell migration and cytoskeletal dynamics. For this signalling is the SH3 domain of p130Cas indispensable. In this thesis, was for the first time using the Phage display method analysed and subsequently characterized the binding motif of SH3 domain of p130Cas. Based on this high-affinity motif [AP]-P-[APMS]-K-P-[LPST]-[LR]- [LPST], we predicted new interaction partners of protein p130Cas and subsequently confirmed the interaction with the Ser/Thr kinase PKN3. This kinase colocalizes with p130Cas in the nucleus and perinuclear region and could phosphorylate p130Cas. In this thesis, we also analysed the effect of phosphomimicking mutation of tyrosine from sequence ALYD, which is conserved in the sequence of SH3 domains, on ability of these domains to bind ligands. This mutation reduced binding by about 3 orders of..

    The interaction of p130Cas with PKN3 promotes malignant growth

    No full text
    Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies

    Detailed protocols supporting DExCon study

    No full text
    Detailed protocols supporting DExCon study. From preparation of ssDNA for CRISPR mediated knock in; delivery of CRISPR/Cas9 as RNP via magnetofection and screening.Protocol for Spheroid invasion assay “on a chip" is included as well

    Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    No full text
    A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results

    Knocksideways Macro

    No full text
    Fiji macro for analysis of protein re-localization to mitochondria via knocksideways method by creating mitochondrial mask and comparing signal the mean pixel of protein candidate between mitochondria and the cell body
    corecore