6 research outputs found

    2D layered perovskite containing functionalised benzothieno-benzothiophene molecules : formation, degradation, optical properties and photoconductivity

    Get PDF
    2D layered hybrid perovskites are currently in the spotlight for applications such as solar cells, light-emitting diodes, transistors and photodetectors. The structural freedom of 2D layered perovskites allows for the incorporation of organic cations that can potentially possess properties contributing to the performance of the hybrid as a whole. In this study, we incorporated a benzothieno[3,2-b]benzothiophene (BTBT) alkylammonium cation into the organic layer of a 2D layered lead iodide perovskite. The formation and degradation of this material are discussed in detail. It is shown that the use of a solvent vapour annealing method significantly enhances the absorption, emission and crystallinity of films of this 2D layered perovskite as compared to regular thermal annealing. The photoconductivity of the films was determined using time-resolved microwave conductivity (TRMC) as well as in a device. In both cases, the solvent vapour annealed films show markedly higher photoconductivity than the films obtained using the regular thermal annealing approach

    Electronic mobility and crystal structures of 2,5-dimethylanilinium triiodide and tin-based organic-inorganic hybrid compounds

    Get PDF
    We synthesize single crystals of a new 2,5-dimethylanilinium tin iodide organic-inorganic hybrid compound and 2,5-dimethylanilinium triiodide. Single-crystal X-ray diffraction reveals that the hybrid grows as a unique rhombohedral structure consisting of one-dimensional chains of SnI6-octahedra that share corners and edges to build up a ribbon along the [111] direction. Notably, we find that hypophosphorous acid, H3PO2, is of central importance to the formation of this hybrid. In the absence of H3PO2, we synthesize 2,5-dimethylanilinium triiodide from the same starting compounds. We investigate the synthesis routes that drive the growth of these two compounds with distinct crystal structures, appearance and properties. Pulse-radiolysis time-resolved microwave conductivity measurements and density functional theory calculations reveal that both compounds have low charge carrier mobilities and very long lifetimes, consistent with their one-dimensional structural characteristics. Our findings give a better understanding of the relation between synthesis, crystal structures and charge carrier mobilities

    2D layered perovskite containing functionalised benzothieno-benzothiophene molecules: Formation, degradation, optical properties and photoconductivity

    Get PDF
    2D layered hybrid perovskites are currently in the spotlight for applications such as solar cells, light-emitting diodes, transistors and photodetectors. The structural freedom of 2D layered perovskites allows for the incorporation of organic cations that can potentially possess properties contributing to the performance of the hybrid as a whole. In this study, we incorporated a benzothieno[3,2-b]benzothiophene (BTBT) alkylammonium cation into the organic layer of a 2D layered lead iodide perovskite. The formation and degradation of this material are discussed in detail. It is shown that the use of a solvent vapour annealing method significantly enhances the absorption, emission and crystallinity of films of this 2D layered perovskite as compared to regular thermal annealing. The photoconductivity of the films was determined using time-resolved microwave conductivity (TRMC) as well as in a device. In both cases, the solvent vapour annealed films show markedly higher photoconductivity than the films obtained using the regular thermal annealing approach.ChemE/Opto-electronic Material

    Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties

    No full text
    Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic-inorganic perovskite materials, which are predominantly based on Ruddlesden-Popper structures. Formamidinium (FA)-based Dion-Jacobson perovskite analogs are developed that feature bifunctional organic spacers separating the hybrid perovskite slabs by introducing 1,4-phenylenedimethanammonium (PDMA) organic moieties. While these materials demonstrate competitive performances as compared to other FA-based low-dimensional perovskite solar cells, the underlying mechanisms for this behavior remain elusive. Here, the structural complexity and optoelectronic properties of materials featuring (PDMA)FA(n)(-1)Pb(n)I(3)(n)(+1)(n = 1-3) formulations are unraveled using a combination of techniques, including X-ray scattering measurements in conjunction with molecular dynamics simulations and density functional theory calculations. While theoretical calculations suggest that layered Dion-Jacobson perovskite structures are more prominent with the increasing number of inorganic layers (n), this is accompanied with an increase in formation energies that rendern > 2 compositions difficult to obtain, in accordance with the experimental evidence. Moreover, the underlying intermolecular interactions and their templating effects on the Dion-Jacobson structure are elucidated, defining the optoelectronic properties. Consequently, despite the challenge to obtain phase-puren > 1 compositions, time-resolved microwave conductivity measurements reveal high photoconductivities and long charge carrier lifetimes. This comprehensive analysis thereby reveals critical features for advancing layered hybrid perovskite optoelectronics

    Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites

    No full text
    Layered hybrid perovskites comprising adamantyl spacer (A) cations based on the A(2)FA(n-1)Pb(n)I(3n+1)(n= 1-3, FA = formamidinium) compositions have recently been shown to act as promising materials for photovoltaic applications. While the corresponding perovskite solar cells show performances and stabilities that are superior in comparison to other layered two-dimensional formamidinium-based perovskite solar cells, the underlying reasons for their behaviour are not well understood. We provide a comprehensive investigation of the structural and photophysical properties of this unique class of materials, which is complemented by theoretical analysisviamolecular dynamics simulations and density functional theory calculations. We demonstrate the formation of well-defined structures of lower compositional representatives based onn= 1-2 formulations with (1-adamantyl)methanammonium spacer moieties, whereas higher compositional representatives (n> 2) are shown to consist of mixtures of low-dimensional phases evidenced by grazing incidence X-ray scattering. Furthermore, we reveal high photoconductivities of the corresponding hybrid perovskite materials, which is accompanied by long charge carrier lifetimes. This study thereby unravels features that are relevant for the performance of FA-based low-dimensional hybrid perovskites

    Guanine‐Stabilized Formamidinium Lead Iodide Perovskites

    No full text
    Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α‐FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive ή‐FAPbI3 phase compromises the photovoltaic performance. A strategy is presented to address this challenge by using low‐dimensional hybrid perovskite materials comprising guaninium (G) organic spacer layers that act as stabilizers of the three‐dimensional α‐FAPbI3 phase. The underlying mode of interaction at the atomic level is unraveled by means of solid‐state nuclear magnetic resonance spectroscopy, X‐ray crystallography, transmission electron microscopy, molecular dynamics simulations, and DFT calculations. Low‐dimensional‐phase‐containing hybrid FAPbI3 perovskite solar cells are obtained with improved performance and enhanced long‐term stability
    corecore