29 research outputs found

    EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: Validation in 55 european laboratories

    Get PDF
    Objectives: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe.Methods: RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated.Results: The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates.Conclusions: The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation.</p

    Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli

    No full text
    The resistance-nodulation-division (RND) family efflux pumps are important in the antibiotic resistance of Gram-negative bacteria. However, although a number of bacterial RND efflux pump inhibitors have been developed, there has been no clinically available RND efflux pump inhibitor to date. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combinations with ciprofloxacin (CIP) against the AcrAB-TolC overexpressor Escherichia coli AG102 clinical strain. The results indicated that the BSN compounds did not show intrinsic antimicrobial activity when tested alone. However, when used in combinations with CIP, a reversal in the antibacterial activity of CIP with up to 10-fold better MIC values was observed. In order to describe the binding site features of these BSN compounds with AcrB, docking studies were performed using the CDocker method. The performed docking poses and the calculated binding energy scores revealed that the tested compounds BSN-006, BSN-023, and BSN-004 showed significant binding interactions with the phenylalanine-rich region in the distal binding site of the AcrB binding monomer. Moreover, the tested compounds BSN-006 and BSN-023 possessed stronger binding energies than CIP, verifying that BSN compounds are acting as the putative substrates of AcrB
    corecore