3,632 research outputs found
Convergent expansions for properties of the Heisenberg model for CaVO
We have carried out a wide range of calculations for the Heisenberg
model with nearest- and second-neighbor interactions on a two-dimensional
lattice which describes the geometry of the vanadium ions in the spin-gap
system CaVO. The methods used were convergent high-order perturbation
expansions (``Ising'' and ``Plaquette'' expansions at , as well as
high-temperature expansions) for quantities such as the uniform susceptibility,
sublattice magnetization, and triplet elementary excitation spectrum.
Comparison with the data for CaVO indicates that its magnetic
properties are well described by nearest-neighbor exchange of about 200K in
conjunction with second-neighbor exchange of about 100K.Comment: Uses REVTEX macros. Four pages in two-column format, five postscript
figures. Files packaged using uufile
Spin-S bilayer Heisenberg models: Mean-field arguments and numerical calculations
Spin-S bilayer Heisenberg models (nearest-neighbor square lattice
antiferromagnets in each layer, with antiferromagnetic interlayer couplings)
are treated using dimer mean-field theory for general S and high-order
expansions about the dimer limit for S=1, 3/2,...,4. We suggest that the
transition between the dimer phase at weak intraplane coupling and the Neel
phase at strong intraplane coupling is continuous for all S, contrary to a
recent suggestion based on Schwinger boson mean-field theory. We also present
results for S=1 layers based on expansions about the Ising limit: In every
respect the S=1 bilayers appear to behave like S=1/2 bilayers, further
supporting our picture for the nature of the order-disorder phase transition.Comment: 6 pages, Revtex 3.0, 8 figures (not embedded in text
Dynamical Structure Factors for Dimerized Spin Systems
We discuss the transition strength between the disordered ground state and
the basic low-lying triplet excitation for interacting dimer materials by
presenting theoretical calculations and series expansions as well as inelastic
neutron scattering results for the material KCuCl_3. We describe in detail the
features resulting from the presence of two differently oriented dimers per
unit cell and show how energies and spectral weights of the resulting two modes
are related to each other. We present results from the perturbation expansion
in the interdimer interaction strength and thus demonstrate that the wave
vector dependence of the simple dimer approximation is modified in higher
orders. Explicit results are given in 10th order for dimers coupled in 1D, and
in 2nd order for dimers coupled in 3D with application to KCuCl_3 and TlCuCl_3.Comment: 17 pages, 6 figures, part 2 is based on cond-mat/021133
Energetic Consistency and Momentum Conservation in the Gyrokinetic Description of Tokamak Plasmas
Gyrokinetic field theory is addressed in the context of a general
Hamiltonian. The background magnetic geometry is static and axisymmetric, and
all dependence of the Lagrangian upon dynamical variables is in the Hamiltonian
or in free field terms. Equations for the fields are given by functional
derivatives. The symmetry through the Hamiltonian with time and toroidal angle
invariance of the geometry lead to energy and toroidal momentum conservation.
In various levels of ordering against fluctuation amplitude, energetic
consistency is exact. The role of this in underpinning of conservation laws is
emphasised. Local transport equations for the vorticity, toroidal momentum, and
energy are derived. In particular, the momentum equation is shown for any form
of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic (MHD)
form when long wavelength approximations are taken in the Hamiltonian. Several
currently used forms, those which form the basis of most global simulations,
are shown to be well defined within the gyrokinetic field theory and energetic
consistency.Comment: RevTeX 4, 47 pages, no figures, revised version updated following
referee comments (discussion more strictly correct/consistent, 4 references
added, results unchanged as they depend on consistency of the theory),
resubmitted to Physics of Plasma
Quantum phase transitions in the Triangular-lattice Bilayer Heisenberg Model
We study the triangular lattice bilayer Heisenberg model with
antiferromagnetic interplane coupling and nearest neighbour
intraplane coupling , which can be ferro- or
antiferromagnetic, by expansions in . For negative a phase
transition is found to an ordered phase at a critical which is in the 3D classical Heisenberg universality class. For
, we find a transition at a rather large . The
universality class of the transition is consistent with that of Kawamura's 3D
antiferromagnetic stacked triangular lattice. The spectral weight for the
triplet excitations, at the ordering wavevector, remains finite at the
transition, suggesting that a phase with free spinons does not exist in this
model.Comment: revtex, 4 pages, 3 figure
Ground State and Elementary Excitations of the S=1 Kagome Heisenberg Antiferromagnet
Low energy spectrum of the S=1 kagom\'e Heisenberg antiferromagnet (KHAF) is
studied by means of exact diagonalization and the cluster expansion. The
magnitude of the energy gap of the magnetic excitation is consistent with the
recent experimental observation for \mpynn. In contrast to the KHAF,
the non-magnetic excitations have finite energy gap comparable to the magnetic
excitation. As a physical picture of the ground state, the hexagon singlet
solid state is proposed and verified by variational analysis.Comment: 5 pages, 7 eps figures, 2 tables, Fig. 4 correcte
Dimer Expansion Study of the Bilayer Square Lattice Frustrated Quantum Heisenberg Antiferromagnet
The ground state of the square lattice bilayer quantum antiferromagnet with
nearest () and next-nearest () neighbour intralayer interaction is
studied by means of the dimer expansion method up to the 6-th order in the
interlayer exchange coupling . The phase boundary between the spin-gap
phase and the magnetically ordered phase is determined from the poles of the
biased Pad\'e approximants for the susceptibility and the inverse energy gap
assuming the universality class of the 3-dimensional classical Heisenberg
model. For weak frustration, the critical interlayer coupling decreases
linearly with . The spin-gap phase persists down to
(single layer limit) for 0.45 \simleq \alpha \simleq 0.65. The crossover of
the short range order within the disordered phase is also discussed.Comment: 4 pages, 6 figures, One reference adde
Meta-Plaquette Expansion for the Triplet Excitation Spectrum in CaVO
We study antiferromagnetic, Heisenberg models with nearest and second
neighbor interactions on the one-fifth depleted square lattice which describes
the spin degrees of freedom in the spin-gap system CaVO. The
meta-plaquette expansion for the triplet excitation spectrum is extended to
fifth order, and the results are compared with experimental data on
CaVO. We attempt to locate the phase boundary between magnetically
ordered and gapped phases.Comment: 4 figure
Low-energy singlet and triplet excitations in the spin-liquid phase of the two-dimensional J1-J2 model
We analyze the stability of the spontaneously dimerized spin-liquid phase of
the frustrated Heisenberg antiferromagnet - the J1-J2 model. The lowest triplet
excitation, corresponding to breaking of a singlet bond, is found to be stable
in the region 0.38 < J2/J1 < 0.62. In addition we find a stable low-energy
collective singlet mode, which is closely related to the spontaneous violation
of the discrete symmetry. Both modes are gapped in the quantum disordered phase
and become gapless at the transition point to the Neel ordered phase
(J2/J1=0.38). The spontaneous dimerization vanishes at the transition and we
argue that the disappearance of dimer order is related to the vanishing of the
singlet gap. We also present exact diagonalization data on a small (4x4)
cluster which indeed show a structure of the spectrum, consistent with that of
a system with a four-fold degenerate (spontaneously dimerized) ground state.Comment: 4 pages, 4 figures, small changes, published versio
- …