892 research outputs found

    A Mass Matrix for Atmospheric, Solar, and LSND Neutrino Oscillations

    Get PDF
    We construct a mass matrix for the four neutrino flavors, three active and one sterile, needed to fit oscillations in all three neutrino experiments: atmospheric, solar, and LSND, simultaneously. It organizes the neutrinos into two doublets whose central values are about 1 eV apart, and whose splittings are of the order of 10^(-3) eV. Atmospheric neutrino oscillations are described as maximal mixing within the upper doublet, and solar as the same within the lower doublet. Then LSND is a weak transition from one doublet to the other. We comment on the Majorana versus Dirac nature of the active neutrinos and show that our mass matrix can be derived from an S_2 x S_2 permutation symmetry plus an equal splitting rule.Comment: 4 pages, 0 figures, minor text change

    Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

    Full text link
    When a phase-separated binary (A+BA+B) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle θ\theta. Young's equation describes this angle in terms of a balance between the ABA-B interfacial tension γAB\gamma_{AB} and the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} between, respectively, the AA- and BB-rich phases and the wall, γABcosθ=γwAγwB\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, θ\theta is estimated from the inclination of the interfaces, as a function of the wall-fluid interaction strength. The information on the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} are obtained independently from a new thermodynamic integration method, while γAB\gamma_{AB} is found from the finite-size scaling analysis of the concentration distribution function. We show that Young's equation describes the contact angles of the actual nanoscale interfaces for this model rather accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure

    A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability

    Full text link
    This is the first of two articles aimed at providing comprehensive predictions for the day-night (D-N) effect for the Super-Kamiokande detector in the case of the MSW \nu_e \to \numt transition solution of the solar neutrino problem. The one-year averaged probability of survival of the solar \nue crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core + mantle) is calculated with high precision (better than 1%) using the elliptical orbit approximation (EOA) to describe the Earth motion around the Sun. Results for the survival probability in the indicated cases are obtained for a large set of values of the MSW transition parameters Δm2\Delta m^2 and sin22θVsin^22\theta_{V} from the ``conservative'' regions of the MSW solution, derived by taking into account possible relatively large uncertainties in the values of the 8^{8}B and 7^{7}Be neutrino fluxes. Our results show that the one-year averaged D-N asymmetry in the νe\nu_e survival probability for neutrinos crossing the Earth core can be, in the case of sin22θV0.13sin^22 \theta_{V} \leq 0.13, larger than the asymmetry in the probability for (only mantle crossing + core crossing) neutrinos by a factor of up to six. The enhancement is larger in the case of neutrinos crossing the inner 2/3 of the core. This indicates that the Super-Kamiokande experiment might be able to test the sin22θV0.01sin^22\theta_{V} \leq 0.01 region of the MSW solution of the solar neutrino problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS + text file sk1b14.tex requires two auxiliary files (included

    Lattice model of gas condensation within nanopores

    Full text link
    We explore the thermodynamic behavior of gases adsorbed within a nanopore. The theoretical description employs a simple lattice gas model, with two species of site, expected to describe various regimes of adsorption and condensation behavior. The model includes four hypothetical phases: a cylindrical shell phase (S), in which the sites close to the cylindrical wall are occupied, an axial phase (A), in which sites along the cylinder's axis are occupied, a full phase (F), in which all sites are occupied, and an empty phase (E). We obtain exact results at T=0 for the phase behavior, which is a function of the interactions present in any specific problem. We obtain the corresponding results at finite T from mean field theory. Finally, we examine the model's predicted phase behavior of some real gases adsorbed in nanopores

    The Earth Effect in the MSW Analysis of the Solar Neutrino Experiments

    Full text link
    We consider the Earth effect in the MSW analysis of the Homestake, Kamiokande, GALLEX, and SAGE solar neutrino experiments. Using the time-averaged data and assuming two-flavor oscillations, the large-angle region of the combined fit extends to much smaller angles (to sin22θ0.1\sin^22\theta \simeq 0.1) than when the Earth effect is ignored. However, the additional constraint from the Kamiokande II day-night data excludes most of the parameter space sensitive to the Earth effect independent of astrophysical uncertainties, and leaves only a small large-angle region close to maximal mixing at 90\% C.L. The nonadiabatic solution remains unaffected by the Earth effect and is still preferred. Both theoretical and experimental uncertainties are included in the analysis.Comment: (11 pages, Revtex 3.0 (can be changed to Latex), 3 postscript figures included, UPR-0570T

    See-saw Enhancement of Lepton Mixing

    Full text link
    The see-saw mechanism of neutrino mass generation may enhance lepton mixing up to maximal even if the Dirac mass matrices of leptons have structure similar to that in the quark sector. Two sets of conditions for such an enhancement are found. The first one includes the see-saw generation of heavy Majorana masses for right-handed neutrinos and a universality of Yukawa couplings which can follow from the unification of neutrinos with new superheavy neutral leptons. The second set is related to lepton number symmetry of the Yukawa interactions in the Dirac basis of neutrinos. Models which realize these conditions have strong hierarchy or strong degeneration of Majorana masses of the right-handed neutrinos.Comment: 16 pages, plain TeX document, Institute for Advanced Study number AST 93/1

    Measurement of the solar neutrino capture rate with gallium metal

    Get PDF
    The solar neutrino capture rate measured by the Russian-American Gallium Experiment (SAGE) on metallic gallium during the period January 1990 through December 1997 is 67.2 (+7.2-7.0) (+3.5-3.0) SNU, where the uncertainties are statistical and systematic, respectively. This represents only about half of the predicted Standard Solar Model rate of 129 SNU. All the experimental procedures, including extraction of germanium from gallium, counting of 71Ge, and data analysis are discussed in detail.Comment: 34 pages including 14 figures, Revtex, slightly shortene

    Seasonal Variations of the 7Be Solar Neutrino Flux

    Full text link
    Measuring the 7Be solar neutrino flux is crucial towards solving the solar neutrino puzzle. The Borexino experiment, and possibly the KamLAND experiment, will be capable of studying the 7Be neutrinos in the near future. We discuss (1) how the seasonal variation of the Borexino and KamLAND data can be used to measure the 7Be solar neutrino flux in a background independent way and (2) how anomalous seasonal variations might be used to discover vacuum neutrino oscillations, independent of the solar model and the measurement of the background. In particular, we find that, after three years of Borexino or KamLAND running, vacuum neutrino oscillations can be either established or excluded for almost all values of (sin^2 2 theta, Delta m^2) preferred by the Homestake, GALLEX, SAGE, and Super-Kamiokande data. We also discuss how well seasonal variations of the data can be used to measure (sin^2 2 theta, Delta m^2) in the case of vacuum oscillations.Comment: 39 pages, 13 figures, uses psfig. Now the impact of the MSW effect on vacuum oscillations taken into account. Conclusions unchanged. References adde

    Solar Model Uncertainties, MSW Analysis, and Future Solar Neutrino Experiments

    Full text link
    Various theoretical uncertainties in the standard solar model and in the Mikheyev-Smirnov-Wolfenstein (MSW) analysis are discussed. It is shown that two methods of estimating the solar neutrino flux uncertainties are equivalent: (a) a simple parametrization of the uncertainties using the core temperature and the nuclear production cross sections; (b) the Monte Carlo method of Bahcall and Ulrich. In the MSW analysis, we emphasize proper treatments of correlation of theoretical uncertainties between flux components and between different detectors, the Earth effect, and multiple solutions in a combined χ2\chi^2 procedure. The MSW solutions for various standard and nonstandard solar models are also shown. The MSW predictions of the global solutions for the future solar neutrino experiments are given, emphasizing the measurement of the energy spectrum and the day-night effect in Sudbury Neutrino Observatory and Super-Kamiokande to distinguish the two solutions.Comment: (Revtex 3.0, 43 pages + 26 figures (uuencoded ps files attached), Easy way: ps files of entire text with embedded figures available by anonymous ftp://upenn5.hep.upenn.edu/pub/hata/papers/msw_analysis.u

    Is Large Lepton Mixing Excluded?

    Full text link
    The original \bnum -(or νˉτ\bar{\nu}_{\tau}-) energy spectrum from the gravitational collapse of a star has a larger average energy than the spectrum for \bnue since the opacity of \bnue exeeds that of \bnum (or ντ\nu_{\tau}). Flavor neutrino conversion, \bnue \leftrightarrow \bnum, induced by lepton mixing results in partial permutation of the original \bnue and \bnum spectra. An upper bound on the permutation factor, p0.35p \leq 0.35 (99%\% CL) is derived using the data from SN1987A and the different models of the neutrino burst. The relation between the permutation factor and the vacuum mixing angle is established, which leads to the upper bound on this angle. The excluded region, sin22θ>0.70.9\sin^2 2\theta > 0.7 - 0.9, covers the regions of large mixing angle solutions of the solar neutrino problem: ``just-so" and, partly, MSW, as well as part of region of νeνμ\nu_{e} - \nu_{\mu} oscillation space which could be responsible for the atmospheric muon neutrino deficit. These limits are sensitive to the predicted neutrino spectrum and can be strengthened as supernova models improve.Comment: 20 pages, TeX file. For hardcopy with figures contact [email protected]. Institute for Advanced Study number AST 93/1
    corecore