27 research outputs found

    Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method

    Get PDF
    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing system

    Impact of Satellite Atmospheric Motion Vectors In the GMAO GEOS-5 Global Data Assimilation System

    Get PDF
    The WMO and THORPEX co-sponsored fifth Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction will be organized by the Expert Team on the Evolution of the Global Observing System in Sedona, Arizona, United States, from 22 to 25 May 2012. Participants are expected to come from all the major NWP centres which are active in the area of impact studies. The workshop will be conducted in English. As for the first four workshops it is planned to produce a workshop report to be published as a WMO Technical Report that will include the papers submitted by the participants. The previous four workshops in this series took place in Geneva {April 1997), Toulouse (March 2000), Alpbach (March 2004) and Geneva (May 2008). Results from Observing System Experiments (OSEs), both with global and regional aspects were presented and conclusions were drawn concerning the contributions of the various components of the observing system to the large scale forecast skill at short and medium range (Workshop Proceedings were published as WMO World Weather Watch Technical Reports TD No. 868, 1034, 1228 and 1450). Since then, some significant changes and developments have affected the global observing system and more efforts have been devoted to meso-scale observing and assimilation systems. There has also been a trend toward using techniques other than OSEs to document data impact, such as adjoint-based sensitivity to observations or ensemble-based sensitivity. Field experiments have been carried out, in particular through the THORPEX project, and the use of targeted data has been assessed

    Inclusion of Linearized Moist Physics in Nasa's Goddard Earth Observing System Data Assimilation Tools

    Get PDF
    Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture

    Impact of Assimilating AIRS Cloud Cleared Radiances on the Analysis and Forecast of Polar Lows

    Get PDF
    Previous work by this team (Reale et al. 2018) has found that the current assimilation of AIRS (Atmospheric InfraRed Sounder) radiances on a regularly spaced thinning grid is suboptimal, probably because of horizontal error correlation over meteorologically inactive areas. Moreover, cloud-cleared radiances appear to be a better product than clear-sky radiances, but need to be assimilated at a much lower density globally, because of the higher information content. Specifically: 1. Assimilation of AIRS cloud-cleared radiances at a density of about one quarter of the clear-sky radiances improves global forecast skill; 2. An adaptive thinning strategy assimilating cloud-cleared radiances at reduced density globally except around tropical cyclones (TCs), leads to substantial improvement in the structure and intensity forecast of TCs without damaging global skill

    Rapid teleconnections associated with individual tropical cyclones

    Get PDF
    Several studies have shown that tropical heating variations at intraseasonal to interannual time scales may be associated with global climate anomalies. During the past decade, relatively high frequency (daily to weekly) variations in tropical convective activity have also been found to produce significant midlatitude responses within days to weeks. In this study, we investigate the processes by which individual tropical cyclones affect midlatitude weather and climate

    On the Limitations of Variational Bias Correction

    Get PDF
    Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors

    The OSSE Framework at the NASA Global Modeling and Assimilation Office (GMAO)

    Get PDF
    This abstract summarizes the OSSE framework developed at the Global Modeling and Assimilation Office at the National Aeronautics and Space Administration (NASA/GMAO). Some of the OSSE techniques developed at GMAO including simulation of realistic observations, e.g., adding errors to simulated observations, are now widely used by the community to evaluate the impact of new observations on the weather forecasts. This talk presents some of the recent progresses and challenges in simulating realistic observations, radiative transfer modeling support for the GMAO OSSE activities, assimilation of OSSE observations into data assimilation systems, and evaluating the impact of simulated observations on the forecast skills

    Recent Updates to the GEOS-5 Linear Model

    Get PDF
    Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation

    Impact of Assimilating AIRS Cloud-Cleared Radiances on Atmospheric Dynamics and Polar Low Representation at High Latitudes

    Get PDF
    This study explores the sensitivity of planetary boundary layer height and related atmospheric dynamics to the assimilation of cloud-cleared AIRS (Atmospheric Infrared Sounder) radiances in the Goddard Earth Observing System (GEOS, version 5) data assimilation and forecast system during the boreal fall 2014 season using observing system experiments (OSEs). Examined here are comparisons between the current, operational approach of assimilating AIRS clear-sky radiances against the assimilation of cloud-cleared radiances (CCR). In polar regions, assimilation of AIRS CCRs is particularly beneficial because of the sparsity of conventional observations and the prevalence of extended low-level stratus cloud cover, which limit the ingestion of clear-sky data. Assimilation of hyperspectral infrared information from AIRS over the Arctic region slightly modifies the lower midtropospheric temperature structure, which in turn contributes to adjustments in geopotential height, affecting the baroclinic instability properties over the entire hemisphere and explaining the overall improvement in global forecast skill. In addition, it is shown that the assimilation of CCRs benefits the representation of convectively-driven small-scale cyclones at high latitudes in the same way as previously noted for tropical cyclones. Specifically, assimilation of CCRs create a temperature dipole over the top of meteorologically active and strongly convective systems such as polar, arctic, and antarctic lows, which helps constrain the analyzed representation of their scale and vertical structure
    corecore