On the limitations of variational bias correction

Isaac Moradi^{1,2}, Will Mccarty¹, Ronald Gelaro¹ 1. GMAO/GSFC/NASA, 2. ESSIC, University of Maryland

98th AMS Annual Meeting | 7–11 January 2018 Austin Convention Center | Austin, TX, U.S.A

January 10, 2018

No reliable water vapor measurements

Uncertainties in our knowledge of the tropospheric humidity

- factors influencing the amount of water vapor
- concentration of water vapor in many regions of the atmosphere
- trend of tropospheric water vapor

No reliable long-term data record

Vergados et al., AMTD, 2015

MW Water Vapor Channels

Left: Era Interim, Right: MERRA-2; Top: MHS Chan 3, Bottom: MHS Chan 4

Isaac Moradi (98th AMS Annual Meeting)

On the limitations of VarBc

January 10, 2018 3 / 19

Variational Bias Correction

Cost function for 3D-Var Data Assimilation:

$$J(\vec{x}) = \underbrace{\frac{J_b}{1}}_{I} \underbrace{\vec{x} - \vec{x_b}}_{I} \vec{B}^{-1}(\vec{x} - \vec{x_b})}_{I} + \underbrace{\frac{J_c}{1}}_{I} (H(\vec{x}) - \vec{y})^T \vec{R}^{-1} (H(\vec{x}) - \vec{y})}_{I}$$

$$y = Tb + \epsilon_r + \epsilon_s$$

 ϵ_s is the random error (R) and ϵ_s is known as observation bias or representativeness error that is taken into account using the variational bias correction:

$$\epsilon_s = \sum_{k=1}^N \beta_k p_k + b^{angle}$$

The control variables (p_k) include cloud liquid water (CLW); temperature lapse rate; and the square of the temperature lapse rate.

Change in ECMWF Model Resolution

GINAO Global Modeling & Assimilation Office

Difference between obs and ana/fg MHS MetOp-A Observations

Isaac Moradi (98th AMS Annual Meeting)

January 10, 2018 6 / 19

Detailed information of implementation of IFS cycle 41r2

Created by Umberto Modigliani, last modified by Paul Dando on Mar 10, 2016

On 8 March 2016, ECMWF upgraded the horizontal resolution of its analyses and forecasts. The upgrade has a horizontal resolution that translates to about 9 km for HRES and the data assimilation (the outer loop of the 4D-Var) and to about 18 km for the ENS up to day 15. The resolution of the ENS extended (day 16 up to day 46) is about 36 km.

A new cycle of the IFS has been introduced to implement the horizontal resolution upgrade. This cycle is labelled 41r2 and includes a number of enhancements to the model and data assimilation listed herein. The detailed specification of the resolution upgrades included in IFS cycle 41r2 are:

- Introduction of a new form of the reduced Gaussian grid, the octahedral grid, for HRES, ENS and ENS Extended;
- Horizontal resolution of the HRES increased from T_L1279 / N640 to T_{CO}1279 / O1280, where subscript C stands for cubic and O for octahedral;
- Horizontal resolution of the ENS increased from T_L639 / N320 to T_{CO}639 / O640 for ENS (Days 0 15) and from T_L319 / N160 to T_{CO}319 / O320 for ENS Extended (Days 16 - 46);
- For the medium-range ENS there will no longer be a decrease of resolution at day 10: the ENS Days 11 15 will be run at the same T_{CO}639 / 0640 resolution as ENS Days 0 - 10;
- Increase of the HRES-WAM resolution from 0.25 to 0.125 degrees and the ENS-WAM Days 0 15 from 0.5 to 0.25 degrees;
- Horizontal resolution of the EDA outer loop is increased from T_L 399 to T_{CO}639 with its two inner loops increased from T_L 159 / T_L 159 to T_L 191 / T_L 191, respectively;
- Horizontal resolution of the three 4DVar inner loops is increased from TL255 / TL255 / TL255 to TL255 / TL319 / TL399, respectively.

These upgrades

- · do not include any increase in the vertical resolution;
- · do not apply to the ECMWF seasonal forecasting system;
- · do not apply to the standalone wave model (HRES-SAW);
- · do apply to products from the Boundary Condition Optional Programme.

During the Release Candidate test phase forecast data will be made available close to real time via

- · product dissemination
- ecCharts
- MARS

э

(日) (同) (三) (三)

Variational Bias Correction

Heterodyne MW Receivers

On the limitations of VarBc

Uncertainty in Antenna Emissivity

Isaac Moradi (98th AMS Annual Meeting)

On the limitations of VarBc

January 10, 2018 10 / 19

Antenna Pattern Correction

Hewison and Saunders 1996

January 10, 2018 <u>11 / 19</u>

Antenna Pattern Correction

Hewison and Saunders 1996 for AMSU-B, Mo 1999 for AMSU-A, EUMETSAT for MHS

$$T_{A} = \frac{1}{N_{n}} [f_{e} \bar{T}_{e} + f_{c} \bar{T}_{c} + \eta f_{s} \bar{T}_{s}]$$

 η is a small correction factor (less than 0.1) which accounts for near field contribution from the satellite platform; f and T denote the efficiency and temperatures, and e, c, and s denote to Earth, Cold Space, and Satellite platform.

Beam	Scan	Ch. 1			Ch. 2			Ch. 3			Ch. 4			Ch. 5		
Postion	Angle	fe	fsat	fc	fe	fsat	fc	fe	fsat	fc	fe	fsat	fc	fe	fsat	fc
	β	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	48.33	98.70	0.37	0.93	99.38	0.19	0.42	98.54	0.67	0.79	98.89	0.27	0.84	98.81	0.31	0.88
3	41.67	98.89	0.31	0.80	99.46	0.17	0.37	98.66	0.67	0.67	99.09	0.23	0.68	99.01	0.28	0.71
5	35.00	99.07	0.26	0.67	99.53	0.15	0.32	98.81	0.65	0.54	99.34	0.21	0.46	99.26	0.25	0.49
7	28.33	99.15	0.22	0.63	99.60	0.13	0.28	98.90	0.63	0.48	99.48	0.19	0.33	99.43	0.23	0.34
9	21.67	99.25	0.18	0.56	99.65	0.11	0.24	98.92	0.63	0.46	99.52	0.19	0.29	99.45	0.22	0.33
11	15.00	99.32	0.16	0.52	99.66	0.11	0.23	98.92	0.63	0.45	99.56	0.19	0.25	99.46	0.21	0.33
13	8.33	99.36	0.16	0.49	99.66	0.11	0.23	98.92	0.64	0.44	99.59	0.19	0.22	99.48	0.21	0.31
15	1.67	99.41	0.16	0.44	99.66	0.11	0.23	98.92	0.66	0.42	99.60	0.19	0.21	99.48	0.22	0.30
16	-1.67	99.43	0.15	0.42	99.67	0.11	0.22	98.91	0.66	0.43	99.60	0.19	0.21	99.48	0.22	0.30
18	-8.33	99.42	0.14	0.44	99.66	0.11	0.23	98.88	0.66	0.46	99.59	0.19	0.22	99.45	0.22	0.33
20	-15.00	99.37	0.14	0.49	99.63	0.11	0.26	98.86	0.66	0.48	99.57	0.20	0.23	99.43	0.22	0.35
22	-21.67	99.29	0.15	0.56	99.58	0.12	0.30	98.83	0.67	0.50	99.53	0.20	0.27	99.40	0.23	0.36
24	-28.33	99.11	0.15	0.74	99.49	0.14	0.37	98.77	0.69	0.54	99.48	0.21	0.31	99.36	0.24	0.39
26	-35.00	98.92	0.18	0.90	99.40	0.17	0.44	98.65	0.71	0.64	99.33	0.23	0.44	99.20	0.28	0.52
28	-41.67	98.68	0.23	1.09	99.30	0.20	0.49	98.46	0.75	0.79	99.13	0.24	0.63	98.98	0.31	0.71
ic Morad	i (98th	AMS An	nual Me	eting)	On the limitations of VarBc								January 10, 2018			

Impact of APC on AMSU-A 50GHz

Isaac Moradi (98th AMS Annual Meeting)

On the limitations of VarBc

January 10, 2018 13 / 19

Non-linearity in Calibration

280

-0.240

-0 255

-0.270

-0.285

-0.300 -0.315

-0.330

-0.345

On the limitations of VarBc

January 10, 2018 14 / 19

Level 1b MHS/AMSU-B

Corrected MHS/AMSU-B

Spatial Distribution of Error Correction

L1b-CDR Chan 2 AMSUB NOAA-16 2008-359

L1b Chan 4 AMSUB NOAA-16 2008-359

E 990

- variational bias correction technique does not distinguish between error sources - errors may compensate for each other
- variational bias correction does not especially work for water vapor channels because of large error in the NWP water vapor fields
- more robust and physical bias correction techniques are available that can quantify the observation errors
- some preliminary results are presented but more work is required to properly validate the impact of bias corrected observations on the DA system

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで