9 research outputs found

    The Incremental Cooperative Design of Preventive Healthcare Networks

    Get PDF
    This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe

    Contribution to the state of charge estimation and the optimised management of a Li-ion battery : application for the electric vehicles

    No full text
    L'estimation de l'état de charge (SOC) est un point crucial pour la sécurité des performances et la durée de vie des batteries lithium-ion (Li-ion) utilisées pour alimenter les VE.Dans cette thèse, la précision de l'estimation de l'état de charge est étudiée à l'aide d'algorithmes de réseaux neuronaux récurrents profonds (DRNN). Pour ce faire, pour une cellule d’une batterie Li-ion, trois nouvelles méthodes sont proposées : une mémoire bidirectionnelle à long et court terme (BiLSTM), une mémoire robuste à long et court terme (RoLSTM) et une technique d'unités récurrentes à grille (GRU).En utilisant ces techniques, on ne dépend pas de modèles précis de la batterie et on peut éviter les méthodes mathématiques complexes, en particulier dans un bloc de batterie. En outre, ces modèles sont capables d'estimer précisément le SOC à des températures variables. En outre, contrairement au réseau de neurones récursif traditionnel dont le contenu est réécrit à chaque fois, ces réseaux peuvent décider de préserver la mémoire actuelle grâce aux passerelles proposées. Dans ce cas, il peut facilement transférer l'information sur de longs chemins pour recevoir et maintenir des dépendances à long terme.La comparaison des résultats indique que le réseau BiLSTM a de meilleures performances que les deux autres méthodes. De plus, le modèle BiLSTM peut travailler avec des séquences plus longues provenant de deux directions, le passé et le futur, sans problème de disparition du gradient. Cette caractéristique permet de sélectionner une longueur de séquence équivalente à une période de décharge dans un cycle de conduite, et d'obtenir une plus grande précision dans l'estimation. En outre, ce modèle s'est bien comporté face à une valeur initiale incorrecte du SOC.Enfin, une nouvelle méthode BiLSTM a été introduite pour estimer le SOC d'un pack de batteries dans un EV. Le logiciel IPG Carmaker a été utilisé pour collecter les données et tester le modèle en simulation. Les résultats ont montré que l'algorithme proposé peut fournir une bonne estimation du SOC sans utilisation de filtre dans le système de gestion de la batterie (BMS).The State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)

    Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique

    No full text
    The State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS).L'estimation de l'état de charge (SOC) est un point crucial pour la sécurité des performances et la durée de vie des batteries lithium-ion (Li-ion) utilisées pour alimenter les VE.Dans cette thèse, la précision de l'estimation de l'état de charge est étudiée à l'aide d'algorithmes de réseaux neuronaux récurrents profonds (DRNN). Pour ce faire, pour une cellule d’une batterie Li-ion, trois nouvelles méthodes sont proposées : une mémoire bidirectionnelle à long et court terme (BiLSTM), une mémoire robuste à long et court terme (RoLSTM) et une technique d'unités récurrentes à grille (GRU).En utilisant ces techniques, on ne dépend pas de modèles précis de la batterie et on peut éviter les méthodes mathématiques complexes, en particulier dans un bloc de batterie. En outre, ces modèles sont capables d'estimer précisément le SOC à des températures variables. En outre, contrairement au réseau de neurones récursif traditionnel dont le contenu est réécrit à chaque fois, ces réseaux peuvent décider de préserver la mémoire actuelle grâce aux passerelles proposées. Dans ce cas, il peut facilement transférer l'information sur de longs chemins pour recevoir et maintenir des dépendances à long terme.La comparaison des résultats indique que le réseau BiLSTM a de meilleures performances que les deux autres méthodes. De plus, le modèle BiLSTM peut travailler avec des séquences plus longues provenant de deux directions, le passé et le futur, sans problème de disparition du gradient. Cette caractéristique permet de sélectionner une longueur de séquence équivalente à une période de décharge dans un cycle de conduite, et d'obtenir une plus grande précision dans l'estimation. En outre, ce modèle s'est bien comporté face à une valeur initiale incorrecte du SOC.Enfin, une nouvelle méthode BiLSTM a été introduite pour estimer le SOC d'un pack de batteries dans un EV. Le logiciel IPG Carmaker a été utilisé pour collecter les données et tester le modèle en simulation. Les résultats ont montré que l'algorithme proposé peut fournir une bonne estimation du SOC sans utilisation de filtre dans le système de gestion de la batterie (BMS)

    Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique

    No full text
    The State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS).L'estimation de l'état de charge (SOC) est un point crucial pour la sécurité des performances et la durée de vie des batteries lithium-ion (Li-ion) utilisées pour alimenter les VE.Dans cette thèse, la précision de l'estimation de l'état de charge est étudiée à l'aide d'algorithmes de réseaux neuronaux récurrents profonds (DRNN). Pour ce faire, pour une cellule d’une batterie Li-ion, trois nouvelles méthodes sont proposées : une mémoire bidirectionnelle à long et court terme (BiLSTM), une mémoire robuste à long et court terme (RoLSTM) et une technique d'unités récurrentes à grille (GRU).En utilisant ces techniques, on ne dépend pas de modèles précis de la batterie et on peut éviter les méthodes mathématiques complexes, en particulier dans un bloc de batterie. En outre, ces modèles sont capables d'estimer précisément le SOC à des températures variables. En outre, contrairement au réseau de neurones récursif traditionnel dont le contenu est réécrit à chaque fois, ces réseaux peuvent décider de préserver la mémoire actuelle grâce aux passerelles proposées. Dans ce cas, il peut facilement transférer l'information sur de longs chemins pour recevoir et maintenir des dépendances à long terme.La comparaison des résultats indique que le réseau BiLSTM a de meilleures performances que les deux autres méthodes. De plus, le modèle BiLSTM peut travailler avec des séquences plus longues provenant de deux directions, le passé et le futur, sans problème de disparition du gradient. Cette caractéristique permet de sélectionner une longueur de séquence équivalente à une période de décharge dans un cycle de conduite, et d'obtenir une plus grande précision dans l'estimation. En outre, ce modèle s'est bien comporté face à une valeur initiale incorrecte du SOC.Enfin, une nouvelle méthode BiLSTM a été introduite pour estimer le SOC d'un pack de batteries dans un EV. Le logiciel IPG Carmaker a été utilisé pour collecter les données et tester le modèle en simulation. Les résultats ont montré que l'algorithme proposé peut fournir une bonne estimation du SOC sans utilisation de filtre dans le système de gestion de la batterie (BMS)

    Adaptive Online Gated Recurrent Unit for Lithium-Ion Battery SOC Estimation

    No full text
    International audienceThe Li-ion batteries are commonly used for Electric Vehicles (EVs) and aerospace applications. One of the essential parameters in Li-ion batteries is state of charge (SOC) that shows the available energy in a battery. Various methods were proposed for SOC estimation. Since the battery has a nonlinear equations, it is important to use a method that does not require the system model. In the present study, a new Adaptive Online Gated Recurrent Unit (GRU) method is proposed for the State of Charge (SOC) estimation. It is a kind of deep Recurrent Neural Network(RNN) which solved the vanishing gradient problem in RNNs with GRU units. For Optimization a robust adaptive Online gradient learning method is used. This method is able to tune online the learning rate in the process. Adaptive GRU is a nondependent method from the nonlinear batteries model and simplifies the mathematical computation. The proposed technique is implemented on the real dataset of LifePO4 Li-ion batteries for finding SOC estimation. The exprimental result indicate that the Adaptive GRU method is more accurate than simple RNN

    Adaptive Online State of Charge Estimation of EVs Lithium-Ion Batteries with Deep Recurrent Neural Networks

    No full text
    The State of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries. In this paper, a Robust Adaptive Online Long Short-Term Memory (RoLSTM) method is proposed to extract SOC estimation for Li-ion Batteries in Electric Vehicles (EVs). This real-time, as its name suggests, method is based on a Recurrent Neural Network (RNN) containing Long Short-Term Memory (LSTM) units and using the Robust and Adaptive online gradient learning method (RoAdam) for optimization. In the proposed architecture, one sequential model is defined for each of the three inputs: voltage, current, and temperature of the battery. Therefore, the three networks work in parallel. With this approach, the number of LSTM units are reduced. Using this suggested method, one is not dependent on precise battery models and can avoid complicated mathematical methods. In addition, unlike the traditional recursive neural network where content is re-written at any time, the LSTM network can decide on preserving the current memory through the proposed gateways. In that case, it can easily transfer this information over long paths to receive and maintain long-term dependencies. Using real databases, the experiment results illustrate the better performance of RoLSTM applied to SOC estimation of Li-Ion batteries in comparison with a neural network modeling and unscented Kalman filter method that have been used thus far

    Adaptive Online State of Charge Estimation of EVs Lithium-Ion Batteries with Deep Recurrent Neural Networks

    No full text
    International audienceThe State of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries. In this paper, a Robust Adaptive Online Long Short-Term Memory (RoLSTM) method is proposed to extract SOC estimation for Li-ion Batteries in Electric Vehicles (EVs). This real-time, as its name suggests, method is based on a Recurrent Neural Network (RNN) containing Long Short-Term Memory (LSTM) units and using the Robust and Adaptive online gradient learning method (RoAdam) for optimization. In the proposed architecture, one sequential model is defined for each of the three inputs: voltage, current, and temperature of the battery. Therefore, the three networks work in parallel. With this approach, the number of LSTM units are reduced. Using this suggested method, one is not dependent on precise battery models and can avoid complicated mathematical methods. In addition, unlike the traditional recursive neural network where content is re-written at any time, the LSTM network can decide on preserving the current memory through the proposed gateways. In that case, it can easily transfer this information over long paths to receive and maintain long-term dependencies. Using real databases, the experiment results illustrate the better performance of RoLSTM applied to SOC estimation of Li-Ion batteries in comparison with a neural network modeling and unscented Kalman filter method that have been used thus far
    corecore