4 research outputs found

    Quadrupole moments of odd-A ⁵³⁻⁶³Mn: Onset of collectivity towards N = 40

    Get PDF
    The spectroscopic quadrupole moments of the odd–even Mn isotopes between N=28 and N=38 have been measured using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. In order to increase sensitivity to the quadrupole interaction, the measurements have been done using a transition in the ion rather than in the atom, with the additional advantage of better spectroscopic efficiency. Since the chosen transition is from a metastable state, optical pumping in ISOLDE’s cooler and buncher (ISCOOL) was used to populate this state. The extracted quadrupole moments are compared to large-scale shell model predictions using three effective interactions, GXPF1A, LNPS and modified A3DA. The inclusion of both the 1νg9/2and 2νd5/2orbitals in the model space is shown to be necessary to reproduce the observed increase in the quadrupole deformation from N=36 onwards. Specifically, the inclusion of the 2νd5/2orbital induces an increase in neutron and proton excitations across the reduced gaps at N=40and Z=28, leading to an increase in deformation above N=36

    Genetic algorithms for machine optimization in the FAIR control system environment

    No full text
    An automated beam-setting optimization application has been implemented on top of FAIR’s control system software stack based on CERN’s LSA framework. The optimization functionality is built using the Jenetics software library implemented in Java. Tests of the software with beam have been performed at the CRYRING@ESR ion storage ring

    Automatized optimization of beam lines using evolutionary algorithms

    No full text
    Due to the massive parallel operation modes at GSI accelerators, a lot of accelerator setup and re-adjustment has to be made by operators during a beam time. This is typically done manually using potentiometers and is very time-consuming. With the FAIR project the complexity of the accelerator facility increases further and for efficiency reasons it is recommended to establish a high level of automation for future operation. Modern Accelerator Control Systems allow a fast access to both, accelerator settings and beam diagnostics data. This provides the opportunity to implement algorithms for automated adjustment of e.g. magnet settings to maximize transmission and optimize required beam parameters. The fast-switching magnets in GSI-beamlines are an optimal basis for an automatic exploration of the parameter-space. The optimization of the parameters for the SIS18 multi-turn-injection using a genetic algorithm has already been simulated*. The first results of our automatized online parameter optimization at the CRYRING@ESR injector are presented here
    corecore