33 research outputs found
Component integration strategies in metamorphic 4-junction III-V concentrator solar cells
Progressing beyond 3-junction inverted-metamorphic multijunction solar cells grown on GaAs substrates, to 4-junction devices, requires the development of high quality metamorphic 0.7 eV GaInAs solar cells. Once accomplished, the integration of this subcell into a full, Monolithic, series connected, 4J-IMM structure demands the development of a metamorphic tunnel junction lattice matched to the 1eV GaInAs subcell. Moreover, the 0.7 eV junction adds about 2 hours of growth time to the structure, implying a heavier annealing of the subcells and tunnel junctions grown first. The final 4J structure is above 20 Pm thick, with about half of this thickness used by the metamorphic buffers required to change the lattice constant throughout the structure. Thinning of these buffers would help reduce the total thickness of the 4J structure to decrease its growth cost and the annealing time. These three topics: development of a metamorphic tunnel junction for the 4th junction, analysis of the annealing, and thinning of the structure, are tackled in this work. The results presented show the successful implementation of an antimonide-based tunnel junction for the 4th junction and of pathways to mitigate the impact of annealing and reduce the thickness of the metamorphic buffers
Experimental and modeling analysis of internal luminescence in III-V solar cells
In high quality solar cells, the internal luminescence can be harnessed to enhance the overall performance. Internal confinement of the photons can lead to an increased open-circuit voltage and short-circuit current. Alternatively, in multijunction solar cells the photons can be coupled from a higher bandgap junction to a lower bandgap junction for enhanced performance. We model the solar cell as an optical cavity and compare calculated performance characteristics with measurements. We also describe how very high luminescent coupling alleviates the need for top-cell thinning to achieve current-matching
Metamorphic III-V solar cells: recent progress and potential
Metamorphic semiconductor devices are commonly considered to have inferior electronic quality. However, recent development of compositionally graded buffers and junction structures have led to the achievement of high quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. Optimizing the optical design of the solar cell becomes important in order to enhance photon recycling and open circuit voltage in these cells. In this paper we first present recent performance results for 1eV and 0.7eV GaInAs solar cells grown on GaAs substrates. Then an electro-optical model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that significant improvements can be achieved by improving both the electronic quality and optics of these cells
Micro-optical Tandem Luminescent Solar Concentrators
Traditional concentrating photovoltaic (CPV) systems utilize multijunction
cells to minimize thermalization losses, but cannot efficiently capture diffuse
sunlight, which contributes to a high levelized cost of energy (LCOE) and
limits their use to geographical regions with high direct sunlight insolation.
Luminescent solar concentrators (LSCs) harness light generated by luminophores
embedded in a light-trapping waveguide to concentrate light onto smaller cells.
LSCs can absorb both direct and diffuse sunlight, and thus can operate as flat
plate receivers at a fixed tilt and with a conventional module form factor.
However, current LSCs experience significant power loss through parasitic
luminophore absorption and incomplete light trapping by the optical waveguide.
Here we introduce a tandem LSC device architecture that overcomes both of these
limitations, consisting of a PLMA polymer layer with embedded CdSe/CdS quantum
dot (QD) luminophores and InGaP micro-cells, which serve as a high bandgap
absorber on top of a conventional Si photovoltaic. We experimentally synthesize
CdSe/CdS QDs with exceptionally high quantum-yield (99%) and ultra-narrowband
emission optimally matched to fabricated III-V InGaP micro-cells. Using a Monte
Carlo ray-tracing model, we show the radiative limit power conversion
efficiency for a module with these components to be 30.8% diffuse sunlight
conditions. These results indicate that a tandem LSC-on-Si architecture could
significantly improve upon the efficiency of a conventional Si photovoltaic
module with simple and straightforward alterations of the module lamination
steps of a Si photovoltaic manufacturing process, with promise for widespread
module deployment across diverse geographical regions and energy markets
Metamorphic Ga0.76In0.24As/GaAs0.75Sb0.25 tunnel junctions grown on GaAs substrates
Lattice-matched and pseudomorphic tunnel junctions have been developed in the past for application in a variety of semiconductor devices, including heterojunction bipolar transistors, vertical cavity surface-emitting lasers, and multijunction solar cells. However, metamorphic tunnel junctions have received little attention. In 4-junction Ga0.51In0.49P/GaAs/Ga0.76In0.24As/Ga0.47In0.53As inverted-metamorphic solar cells (4J-IMM), a metamorphic tunnel junction is required to series connect the 3rd and 4th junctions. We present a tunnel junction based on a metamorphic Ga0.76In0.24As/GaAs0.75Sb0.25 structure for this purpose. This tunnel junction is grown on a metamorphic Ga0.76In0.24As template on a GaAs substrate. The band offsets in the resulting type-II heterojunction are calculated using the first-principles density functional method to estimate the tunneling barrier height and assess the performance of this tunnel junction against other material systems and compositions. The effect of the metamorphic growth on the performance of the tunnel junctions is analyzed using a set of metamorphic templates with varied surface roughness and threading dislocation density. Although the metamorphic template does influence the tunnel junction performance, all tunnel junctions measured have a peak current density over 200 A/cm2. The tunnel junction on the best template has a peak current density over 1500 A/cm2 and a voltage drop at 15 A/cm2 (corresponding to operation at 1000 suns) lower than 10 mV, which results in a nearly lossless series connection of the 4th junction in the 4J-IMM structure.The authors thankfully acknowledge the invaluable support by W. Olavarria and M. Young growing and
processing the semiconductor devices. I. Garcıa holds an IOF grant from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/ 2007-2013) under REA grant agreement No. 299878. This work is supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory
Characterization of multiterminal tandem photovoltaic devices and their subcell coupling
Three-terminal (3T) and four-terminal (4T) tandem photovoltaic (PV) devices using various materials have been increasingly reported in the literature, but measurement standards are lacking. Here, multiterminal devices measured as functions of two load variables are characterized unambiguously as functions of three device voltages or currents on hexagonal plots. We demonstrate these measurement techniques using two GaInP/GaAs tandem solar cells, with a middle contact between the two subcells, as example 3T devices with both series-connected and reverse-connected subcells. Coupling mechanisms between the subcells are quantified within the context of a simple equivalent optoelectronic circuit. Electrical and optical coupling mechanisms are most clearly revealed using coupled dark measurements. These measurements are sensitive enough to observe very small luminescent coupling from the bottom subcell to the top subcell in the prototype 3T device. Quick simplified measurement techniques are also discussed within the context of the complete characterization
Generalized optoelectronic model of series-connected multijunction solar cells
The emission of light from each junction in a series-connected multijunction solar cell both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs of the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements
Effects of internal luminescence and internal optics on V-oc and J(sc) of III-V solar cells
For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells
Sub-0.6 eV Inverted Metamorphic GaInAs Cells Grown on InP and GaAs Substrates for Thermophotovoltaics and Laser Power Conversion
We present inverted metamorphic Ga0.3In0.7As photovoltaic converters with
sub-0.60 eV bandgaps grown on InP and GaAs substrates. The compositionally
graded buffers in these devices have threading dislocation densities of
1.3x10^6 cm^-2 and 8.9x10^6 cm^-2 on InP and GaAs, respectively. The devices
generate open-circuit voltages of 0.386 V and 0.383 V, respectively, at a
current density of ~10 A/cm^2, yielding bandgap-voltage offsets of 0.20 and
0.21 V. We measured their broadband reflectance and used it to estimate
thermophotovoltaic efficiency. The InP-based cell is estimated to yield 1.09
W/cm^2 at 1100 degrees C vs. 0.92 W/cm^2 for the GaAs-based cell, with
efficiencies of 16.8 vs. 9.2%. The efficiencies of both devices are limited by
sub-bandgap absorption, with power weighted sub-bandgap reflectances of 81% and
58%, respectively, which we assess largely occurs in the graded buffers. We
estimate that the thermophotovoltaic efficiencies would peak at ~1100 degrees C
at 24.0% and 20.7% in structures with the graded buffer removed, if previously
demonstrated reflectance is achieved. These devices also have application to
laser power conversion in the 2.0-2.3 micron atmospheric window. We estimate
peak LPC efficiencies of 36.8% and 32.5% under 2.0 micron irradiances of 1.86
W/cm^2 and 2.81 W/cm^2, respectively.Comment: 14 pages, 6 figure
Mechanically stacked four-junction concentrator solar cells
Multijunction solar cells can be fabricated by bonding together component cells that are grown separately. Because the component cells are each grown lattice-matched to suitable substrates, this technique allows alloys of different lattice constants to be combined without the structural defects introduced when using metamorphic buffers. Here we present results on the fabrication and performance of four-junction mechanical stacks composed of GaInP/GaAs and GaInAsP/GaInAs tandems, grown on GaAs and InP substrates, respectively. The two tandems were bonded together with a lowindex, transparent epoxy that acts as an omni-directional reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the sub-bandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and thus higher subcell voltage, compared with GaAs subcells without enhanced internal optics; all four subcells exhibit excellent material quality. The device was fabricated with four contact terminals so that each tandem can be operated at its maximum power point, which raises the cumulative efficiency and decreases spectral sensitivity. Efficiencies exceeding 38% at one-sun have been demonstrated. Eliminating the series resistance is the key challenge for the concentrator cells. We will discuss the performance of one-sun and concentrator versions of the device, and compare the results to recently fabricated monolithic four-junction cells