24 research outputs found

    Fabrication of a Porous Fiber Cladding Material Using Microsphere Templating for Improved Response Time with Fiber Optic Sensor Arrays

    Get PDF
    A highly porous optical-fiber cladding was developed for evanescent-wave fiber sensors, which contains sensor molecules, maintains guiding conditions in the optical fiber, and is suitable for sensing in aqueous environments. To make the cladding material (a poly(ethylene) glycol diacrylate (PEGDA) polymer) highly porous, a microsphere templating strategy was employed. The resulting pore network increases transport of the target analyte to the sensor molecules located in the cladding, which improves the sensor response time. This was demonstrated using fluorescein-based pH sensor molecules, which were covalently attached to the cladding material. Scanning electron microscopy was used to examine the structure of the templated polymer and the large network of interconnected pores. Fluorescence measurements showed a tenfold improvement in the response time for the templated polymer and a reliable pH response over a pH range of five to nine with an estimated accuracy of 0.08 pH units

    Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing Escherichia coli

    Get PDF
    Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast change

    Case report: a unique pediatric case of a primary CD8 expressing ALK-1 positive anaplastic large cell lymphoma of skeletal muscle

    Get PDF
    Primary involvement of skeletal muscle is a very rare event in ALK-1 positive anaplastic large cell lymphoma (ALCL). We describe a case of a 10-year old boy presenting with a three week history of pain and a palpable firm swelling at the dorsal aspect of the left thigh. Histological examination of the lesion revealed a tumoral and diffuse polymorphic infiltration of the muscle by large lymphoid cells. Tumor cells displayed eccentric, lobulated "horse shoe" or "kidney-shape" nuclei. The cells showed immunohistochemical positivity for CD30, ALK-1, CD2, CD3, CD7, CD8, and Perforin. Fluorescence in situ hybridization analysis revealed a characteristic rearrangement of the ALK-1 gene in 2p23 leading to the diagnosis of ALK-1 positive ALCL. Chemotherapy according to the ALCL-99-NHL-BFM protocol was initiated and resulted in a complete remission after two cycles. This case illustrates the unusual presentation of a pediatric ALCL in soft tissue with a good response to chemotherapy

    Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT

    Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure

    Get PDF
    Aberrant activation of the translation initiation machinery is a common property of malignant cells, and is essential for breast carcinoma cells to manifest a malignant phenotype. How does sustained activation of the rate limiting step in protein synthesis so fundamentally alter a cell? In this report, we test the post transcriptional operon theory as a possible mechanism, employing a model system in which apoptosis resistance is conferred on NIH 3T3 cells by ectopic expression of eIF4E. We show (i) there is a set of 255 transcripts that manifest an increase in translational efficiency during eIF4E-mediated escape from apoptosis; (ii) there is a novel prototype 55 nt RNA consensus hairpin structure that is overrepresented in the 5′-untranslated region of translationally activated transcripts; (iii) the identified consensus hairpin structure is sufficient to target a reporter mRNA for translational activation under pro-apoptotic stress, but only when eIF4E is deregulated; and (iv) that osteopontin, one of the translationally activated transcripts harboring the identified consensus hairpin structure functions as one mediator of the apoptosis resistance seen in our model. Our findings offer genome-wide insights into the mechanism of eIF4E-mediated apoptosis resistance and provide a paradigm for the systematic study of posttranscriptional control in normal biology and disease

    Crossed optical fiber sensor arrays for high-spatial-resolution sensing: application to dissolved oxygen concentration measurements. Hindawi Publishing Corporation Journal of Sensors volume 2012, article id 464092

    No full text
    Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol) precursors, which increase the hydrophobicity of the film surface

    Measurement and Optimization of Metal-Nanoparticle-Induced Luminescence Enhancement Factors in a Crossed-Optical Fiber Configuration

    Get PDF
    A crossed-optical-fiber configuration comprised of silver nanoparticles covalently attached to the core of an optical fiber and labeled with luminescent ruthenium molecules is reported. A second optical fiber was placed at right angle of the fiber containing the nanoparticle/ruthenium, to form a fiber-fiber junction, and it was used to detect the luminescence from the ruthenium molecules bound to the first fiber. To employ the effect of metal-enhanced luminescence, the ruthenium complex was kept at an appropriate distance from the nanoparticles by polyelectrolyte spacer layers. For silver nanospheres, nanotriangles and nanorods and for spacer-layer thicknesses from 2–14 nm luminescence-enhancement factors were determined. A 27-fold luminescence enhancement was found when the ruthenium complex was placed 4 nm from silver nanotriangles. Finally, a calibration curve for the oxygen dependence of luminescence intensities and lifetimes of ruthenium complex is presented suggesting that the oxygen sensing capabilities of the nanoengineered-ruthenium complex are maintained

    Absorption-Modulated Crossed-Optical Fiber-Sensor Platform for Measurements in Liquid Environments and Flow Streams

    No full text
    A new evanescent-wave fiber sensor is described that utilizes absorption-modulated luminescence (AML) in combination with a crossed-fiber sensor platform. The luminescence signals of two crossed-fiber reference regions, placed on opposite sides of the stretch of fiber supporting the absorbance sensor, monitor the optical intensity in the fiber core. Evanescent absorption of the sensor reduces a portion of the excitation light and modulates the luminescence of the second reference region. The attenuation is determined from the luminescence intensity of both reference regions similar to the Beer-Lambert Law. The AML-Crossed-Fiber technique was demonstrated using the absorbance of the Zn(II)-PAN2 complex at 555 nm. A linear response was obtained over a zinc(II) concentration range of 0 to 20 μM (approximately 0 to 1.3 ppm). A nonlinear response was observed at higher zinc(II) concentrations and was attributed to depletion of higher-order modes in the fiber. This was corroborated by the measured induced repopulation of these modes

    Crossed-Optical-Fiber Oxygen Sensors with Intensity and Temperature Referencing for Use in High-Spatial-Resolution Sensor Arrays

    No full text
    We investigated the fabrication of an optical-fiber oxygen sensor based on luminescence quenching of a ruthenium (II) complex for our optical-fiber-sensor arrays. Sensor regions are located between two optical fibers forming orthogonal fiber-fiber junctions. Ruthenium molecules are embedded in a photo-polymerized hydrogel matrix, which is covalently attached to the surface-modified fiber-core. For the optical evaluation of these sensors, the fiber sensor junctions are placed in a flow cell. When gaseous oxygen diffuses into the hydrogel, it quenches the luminescence, with the degree of quenching correlating with oxygen partial pressure; this behavior was indeed observed in the crossed-fiber configuration with a sensor response time of 1 s. To account for intensity fluctuations, an oxygen-insensitive dye in an adjacent fiber-fiber junction was used for intensity referencing, which markedly improved the response curves. The oxygen sensor was also corrected for the temperature-dependence of the ruthenium complex using the dye Kiton Red
    corecore