7,448 research outputs found

    More functions of torpor and their roles in a changing world

    Get PDF
    Increased winter survival by reducing energy expenditure in adult animals is often viewed as the primary function of torpor. However, torpor has many other functions that ultimately increase the survival of heterothermic mammals and birds. In this review, we summarize new findings revealing that animals use torpor to cope with the conditions during and after natural disasters, including fires, storms, and heat waves. Furthermore, we suggest that torpor, which also prolongs longevity and was likely crucial for survival of mammals during the time of the dinosaur extinctions, will be advantageous in a changing world. Climate change is assumed to lead to an increase in the occurrence and intensity of climatic disasters, such as those listed above and also abnormal floods, droughts, and extreme temperatures. The opportunistic use of torpor, found in many heterothermic species, will likely enhance survival of these challenges, because these species can reduce energy and foraging requirements. However, many strictly seasonal hibernators will likely face the negative consequences of the predicted increase in temperature, such as range contraction. Overall, available data suggest that opportunistic heterotherms with their flexible energy requirements have an adaptive advantage over homeotherms in response to unpredictable conditions

    Speckle Reduction and Contrast Enhancement of Echocardiograms via Multiscale Nonlinear Processing

    Get PDF
    This paper presents an algorithm for speckle reduction and contrast enhancement of echocardiographic images. Within a framework of multiscale wavelet analysis, the authors apply wavelet shrinkage techniques to eliminate noise while preserving the sharpness of salient features. In addition, nonlinear processing of feature energy is carried out to enhance contrast within local structures and along object boundaries. The authors show that the algorithm is capable of not only reducing speckle, but also enhancing features of diagnostic importance, such as myocardial walls in two-dimensional echocardiograms obtained from the parasternal short-axis view. Shrinkage of wavelet coefficients via soft thresholding within finer levels of scale is carried out on coefficients of logarithmically transformed echocardiograms. Enhancement of echocardiographic features is accomplished via nonlinear stretching followed by hard thresholding of wavelet coefficients within selected (midrange) spatial-frequency levels of analysis. The authors formulate the denoising and enhancement problem, introduce a class of dyadic wavelets, and describe their implementation of a dyadic wavelet transform. Their approach for speckle reduction and contrast enhancement was shown to be less affected by pseudo-Gibbs phenomena. The authors show experimentally that this technique produced superior results both qualitatively and quantitatively when compared to results obtained from existing denoising methods alone. A study using a database of clinical echocardiographic images suggests that such denoising and enhancement may improve the overall consistency of expert observers to manually defined borders

    Body temperature and activity patterns of free-living laughing kookaburras: the largest kingfisher is heterothermic.

    Get PDF
    We show that free-ranging Laughing Kookaburras (Dacelo novaeguineae), the largest kingfishers, are heterothermic. Their minimum recorded body temperature (Tb) was 28.6°C, and the maximum daily Tb range was 9.1°C, which makes kookaburras only the second coraciiform species and the only member of the Alcedinidae known to be heterothermic. The amplitude of nocturnal body temperature variation for wild, free-living kookaburras during winter was substantially greater than the mean of 2.6°C measured previously for captive kookaburras. Calculated metabolic savings from nocturnal heterothermia were up to 5.6 ± 0.9 kJ per night. There was little effect of ambient temperature on any of the calculated Tb-dependent variables for the kookaburras, although ambient temperature did influence the time that activity commenced for these diurnal birds. Kookaburras used endogenous metabolic heat production to rewarm from low Tb, rather than relying on passive rewarming. Rewarming rates (0.05 ± 0.01°C min−1) were consistent with those of other avian species. Captivity can have major effects on thermoregulation for birds, and therefore the importance of field studies of wild, free-living individuals is paramount for understanding the biology of avian temperature regulation

    CHANGES IN PRINCIPAL COMPONENT STRUCTURE OF COUNTERMOVEMENT JUMPS AFTER A VOLLEYBALL SEASON

    Get PDF
    The purpose of this study was to investigate changes in the principal component structure of countermovement jumps (CMJ) in female volleyball players over the course of a competitive season. Eleven NCAA Division I female volleyball players performed CMJs on a force plate before and after a competitive season. Discrete biomechanical variables were extracted from the force-time records of all CMJs and entered into a factor analysis. The analysis yielded two factors that could account for the biomechanical structure of the CMJs: a temporal and a force factor. Although no differences in factor scores were identified between pre- and post-season testing sessions, sub-group analysis highlighted large individual changes in temporal and force factor scores

    Coupling of THz radiation with intervalence band transitions in microcavities

    Get PDF
    The strong coupling of THz radiation and material excitations can improve the quantum efficiency of THz emitters. In this paper, we investigate THz polaritons and antipolaritons based on valence band transitions, which allow TE coupling in a simple configuration. The approach can improve the quantum efficiency of THz based devices based on TE mode in the strong coupling regime of THz radiations and intervalence bands transitions in a GaAs/AlGaAs quantum wells. A Nonequilibrium Many Body Approach for the optical response beyond the Hartree-Fock approximation is used as input to the effective dielectric function formalism for the polariton/antipolariton problem. The energy dispersion relations in the THz range are obtained by adjusting the full numerical solutions to simple analytical expressions, which can be used for non specialists in a wide number of new structures and material systems. The combination of manybody and nonparabolicity at high densities leads to dramatic changes in the polariton spectra in a nonequilibrium configuration, which is only possible for intervalence band transitions

    Time-stepping beyond CFL: a locally one-dimensional scheme for acoustic wave propagation

    Get PDF
    In this abstract, we present a case study in the application of a time-stepping method, unconstrained by the CFL condition, for computational acoustic wave propagation in the context of full waveform inversion. The numerical scheme is a locally one-dimensional (LOD) variant of alternating dimension implicit (ADI) method. The LOD method has a maximum time step that is restricted only by the Nyquist sampling rate. The advantage over traditional explicit time-stepping methods occurs in the presence of high contrast media, low frequencies, and steep, narrow perfectly matched layers (PML). The main technical point of the note, from a numerical analysis perspective, is that the LOD scheme is adapted to the presence of a PML. A complexity study is presented and an application to full waveform inversion is shown.National Science Foundation (U.S.); Alfred P. Sloan Foundatio

    Snoozing through the storm: torpor use during a natural disaster

    Get PDF
    Although storms provide an extreme environmental challenge to organisms and are predicted to increase in frequency and intensity due to climate change, there are no quantitative observations on the behaviour and physiology of animals during natural disasters. We provide the first data on activity and thermal biology of a free-ranging, arboreal mammal during a storm with heavy rain and category 1 cyclone wind speeds. We studied a population of sugar gliders (Petaurus breviceps), a species vulnerable to bad weather due to their small body size and mode of locomotion, in a subtropical habitat during spring when storms are common. Although torpor is generally rare in this species, sugar gliders remained inactive or reduced foraging times during the storm and further minimized energy demands by entering deep torpor. All animals survived the storm and reverted to normal foraging activity during the following night(s). It thus appears that heterothermic mammals have a crucial adaptive advantage over homeothermic species as they can outlast challenging weather events, such as storms and floods, by reducing metabolism and thus energetic needs

    A new cue for torpor induction: charcoal, ash and smoke

    Get PDF
    Recent work has shown that the use of torpor for energy conservation increases after forest fires in heterothermic mammals, probably in response to the reduction of food. However, the specific environmental cues for this increased torpor expression remain unknown. It is possible that smoke and the novel substrate of charcoal and ash act as signals for an impending period of starvation requiring torpor. We therefore tested the hypothesis that the combined cues of smoke, a charcoal/ash substrate and food shortage will enhance torpor expression in a small forest-dwelling marsupial, the yellowfooted antechinus (Antechinus flavipes), because like other animals that live in fire-prone habitats they must effectively respond to fires to ensure survival. Activity and body temperature patterns of individuals in outdoor aviaries were measured under natural environmental conditions. All individuals were strictly nocturnal, but diurnal activity was observed shortly after smoke exposure. Overall, torpor in females was longer and deeper than that in males. Interestingly, while both males and females increased daily torpor duration during food restriction by >2-fold as anticipated, a combination of food restriction and smoke exposure on a charcoal/ash substrate further increased daily torpor duration by ∼2-fold in both sexes. These data show that this combination of cues for torpor induction is stronger than food shortage on its own. Our study provides significant new information on how a small forest-dwelling mammal responds to fire cues during and immediately after a fire and identifies a new, not previously recognised, regulatory mechanism for thermal biology in mammals
    • …
    corecore