330 research outputs found

    DC-SIGN promotes Japanese encephalitis virus transmission from dendritic cells to T cells via virological synapses.

    Get PDF
    Skin-resident dendritic cells (DCs) likely encounter incoming viruses in the first place, and their migration to lymph nodes following virus capture may promote viral replication. However, the molecular mechanisms underlying these processes remain unclear. In the present study, we found that compared to cell-free viruses, DC-bound viruses showed enhanced capture of JEV by T cells. Additionally, JEV infection was increased by co-culturing DCs and T cells. Blocking the C-type lectin receptor DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) with neutralizing antibodies or antagonists blocked JEV transmission to T cells. Live-cell imaging revealed that DCs captured and transferred JEV viral particles to T cells via virological synapses formed at DC-T cell junctions. These findings indicate that DC-SIGN plays an important role in JEV transmission from DCs to T cells and provide insight into how JEV exploits the migratory and antigen-presenting capabilities of DCs to gain access to lymph nodes for dissemination and persistence in the host

    HIV-1 Disease Progression Is Associated with Bile-Salt Stimulated Lipase (BSSL) Gene Polymorphism

    Get PDF
    Background: DC-SIGN expressed by dendritic cells captures HIV-1 resulting in trans-infection of CD4+ T-lymphocytes. However, BSSL (bile-salt stimulated lipase) binding to DC-SIGN interferes with HIV-1 capture. DC-SIGN binding properties of BSSL associate with the polymorphic repeated motif of BSSL exon 11. Furthermore, BSSL binds to HIV-1 co-receptor CXCR4. We hypothesized that BSSL modulates HIV-1 disease progression and emergence of CXCR4 using HIV-1 (X4) variants. Results: The relation between BSSL genotype and HIV-1 disease progression and emergence of X4 variants was studied using Kaplan Meier and multivariate Cox proportional hazard analysis in a cohort of HIV-1 infected men having sex with men (n = 334, with n = 130 seroconverters). We analyzed the association of BSSL genotype with set-point viral load and CD4 cell count, both pre-infection and post-infection at viral set-point. The number of repeats in BSSL exon 11 were highly variable ranging from 10 to 18 in seropositive individuals and from 5-17 in HRSN with 16 repeats being dominant (>80% carry at least one allele with 16 repeats). We defined 16 to 18 repeats as high (H) and less than 16 repeats as low (L) repeat numbers. Homozygosity for the high (H) repeat number BSSL genotype (HH) correlated with high CD4 cell numbers prior to infection (p = 0.007). In HIV-1 patients, delayed disease progression was linked to the HH BSSL genotype (RH = 0.462 CI = 0.282-0.757, p = 0.002) as was delayed emergence of X4 variants (RH = 0.525, 95% CI = 0.290-0.953, p = 0.034). The LH BSSL genotype, previously found to be associated with enhanced DC-SIGN binding of human milk, was identified to correlate with accelerated disease progression in our cohort of HIV-1 infected MSM (RH = 0.517, 95% CI = 0.328-0.818, p = 0.005). Conclusion: We identify BSSL as a marker for HIV-1 disease progression and emergence of X4 variants. Additionally, we identified a relation between BSSL genotype and CD4 cell counts prior to infectio

    Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat

    Get PDF
    Nanomaterial of titanium dioxide (TiO2) is manufactured in large-scale production plants, resulting in risks for accidental high exposures of humans. Inhalation of metal oxide nanoparticles in high doses may lead to both acute and long-standing adverse effects. By using the Dark Agouti (DA) rat, a strain disposed to develop chronic inflammation following exposure to immunoactivating adjuvants, we investigated local and systemic inflammatory responses after lung exposure of nanosized TiO2 particles up to 90 days after intratracheal instillation. TiO2 induced a transient response of proinflammatory and T-cell-activating cytokines (interleukin [IL]-1α, IL-1β, IL-6, cytokine-induced neutrophil chemoattractant [CINC]-1, granulocyte-macrophage colony-stimulating factor [GM-CSF], and IL-2) in airways 1-2 days after exposure, accompanied byaninfluxofeosinophilsand neutrophils. Neutrophil numbers remained elevated for 30 days, whereas the eosinophils declined to baseline levels at Day 8, simultaneously with an increase of dendritic cells and natural killer (NK) cells. The innate immune activation was followed by a lymphocyte expansion that persisted throughout the 90-day study. Lymphocytes recruited to the lungs were predominantly CD4+ helper T-cells, but we also demonstrated presence of CD8+T-cells, B-cells, and CD25+T-cells. In serum, we detected both an early cytokine expression at Days 1-2 (IL-2, IL-4, IL-6, CINC-1, IL-10, and interferon-gamma [IFN-γ] and a second response at Day 16 of tumor necrosis factor-alpha (TNF-α), indicating systemic late-phase effects in addition to the local response in airways. In summary, these data demonstrate a dynamic response to TiO2 nanoparticles in the lungs of DA rats, beginning with an innate immune activation of eosinophils, neutrophils, dendritic cells, and NK cells, followed by a long-lasting activation of lymphocytes involved in adaptive immunity. The results have implications for the assessment of risks for adverse and persistent immune stimulation following nanoparticle exposures in sensitive populations

    In Situ Distribution of HIV-Binding CCR5 and C-Type Lectin Receptors in the Human Endocervical Mucosa

    Get PDF
    The endocervical mucosa is believed to be a primary site of HIV transmission. However, to date there is little known about the distribution of the HIV co-receptor CCR5 and the HIV-binding C-type lectin receptors, including Langerin, dendritic cell (DC)-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN) and mannose receptor (MR) at this site. We therefore characterized the expression of these molecules in the endocervix of HIV seronegative women by computerized image analysis. Endocervical tissue biopsies were collected from women (n = 6) undergoing hysterectomy. All study individuals were diagnosed with benign and non-inflammatory diseases. CCR5+ CD4+ CD3+ T cells were found within or adjacent to the endocervical epithelium. The C-type lectin Langerin was expressed by intraepithelial CD1a+ CD4+ and CD11c+ CD4+ Langerhans cells, whereas DC-SIGN+ MR+ CD11c myeloid dendritic cells and MR+ CD68+ macrophages were localized in the submucosa of the endocervix. The previously defined immune effector cells including CD8+, CD56+, CD19+ and IgD+ cells were also found in the submucosa as well as occasional CD123+ BDCA-2+ plasmacytoid dendritic cells. Understanding the spatial distribution of potential HIV target cells and immune effector cells in relation to the endocervical canal forms a basis for deciphering the routes of HIV transmission events in humans as well as designing HIV-inhibiting compounds

    The Carbohydrate-Binding Site in Galectin-3 Is Preorganized To Recognize a Sugarlike Framework of Oxygens: Ultra-High-Resolution Structures and Water Dynamics

    Get PDF
    The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate-protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultrahigh-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-free state (1.08 angstrom at 100 K, 1.25 angstrom at 298 K) and in complex with lactose (0.86 angstrom) or glycerol (0.9 angstrom). These structures reveal striking similarities in the positions of water and carbohydrate oxygen atoms in all three states, indicating that the binding site of Gal3C is preorganized to coordinate oxygen atoms in an arrangement that is nearly optimal for the recognition of beta-galactosides. Deuterium nuclear magnetic resonance (NMR) relaxation dispersion experiments and molecular dynamics simulations demonstrate that all water molecules in the lactose-binding site exchange with bulk water on a time scale of nanoseconds or shorter. Nevertheless, molecular dynamics simulations identify transient water binding at sites that agree well with those observed by crystallography, indicating that the energy landscape of the binding site is maintained in solution. All heavy atoms of glycerol are positioned like the corresponding atoms of lactose in the Gal3C complexes. However, binding of glycerol to Gal3C is insignificant in solution at room temperature, as monitored by NMR spectroscopy or isothermal titration calorimetry under conditions where lactose binding is readily detected. These observations make a case for protein cryo-crystallography as a valuable screening method in fragment-based drug discovery and further suggest that identification of water sites might inform inhibitor design

    Current Estimates for HIV-1 Production Imply Rapid Viral Clearance in Lymphoid Tissues

    Get PDF
    It has recently been estimated that a single HIV-1 infected cell produces between and more than viral particles over its life span. Since body-wide estimates of the ratio of free virus to productively infected cells are smaller than and much smaller than , individual virions must be cleared rapidly. This seems difficult to reconcile with the fact that most of the total body virus is trapped on follicular dendritic cells where it can survive for many months. It has also been difficult to reconcile the vast difference in the rates at which the virus is cleared from the blood in rhesus macaques and in chronically infected patients. Here we attempt to reconcile these seemingly contradictory observations by considering the virion clearance rate in various organs and the virion exchange rates between them. The main results are that the per capita clearance rate of free virus in lymphoid tissue should be fast, the virion exchange rate between lymphoid tissue and the blood should be slow, and the comparatively slow previous estimates for the virion clearance rate from the blood correspond to the rate of virion efflux from the blood to other organs where the virus is ultimately cleared

    Nod2 Suppresses Borrelia burgdorferi Mediated Murine Lyme Arthritis and Carditis through the Induction of Tolerance

    Get PDF
    The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance
    • …
    corecore