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Abstract

C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction
of TH1 and TH-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-
Malt1 module to activate NF-kB. Here we demonstrate that Malt1 recruitment is pivotal to TH-17 immunity by selective
activation of NF-kB subunit c-Rel, which induces expression of TH-17-polarizing cytokines IL-1b and IL-23p19. Malt1
inhibition abrogates c-Rel activation and TH-17 immunity to Candida species. We found that Malt1-mediated activation of c-
Rel is similarly essential to induction of TH-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-kB subunits,
dectin-2 selectively activates c-Rel, signifying a specialized TH-17-enhancing function for dectin-2 in anti-fungal immunity by
human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive TH-17 immunity to fungi via Malt1-dependent activation
of c-Rel.
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Introduction

Fungal infections are a major health threat and incidence of

both superficial and invasive infections by Candida species are

growing throughout the world due to increasing numbers of at-

risk immunocompromised patients, such as transplant recipi-

ents and those infected with HIV-1/AIDS, as well as the

emergence of strains that are resistant to antimycotic drugs [1].

Anti-fungal adaptive immunity requires both T helper cell type

1 (TH1) and TH-17 immune responses; IL-17 secreted by TH-

17 cells mobilizes neutrophils required for anti-fungal responses

[2,3], whereas TH1-produced IFNc optimally activates neutro-

phils and subsequent phagocytosis of fungi [4]. Dendritic cells

(DCs) are crucial for the induction of T helper cell

differentiation [5,6]. Although the requirements for TH-17

differentiation by human DCs are not completely clear, it is

evident that secretion of IL-23, IL-1b and IL-6 are important

for TH-17 development [7,8], whereas IL-12p70 skews T

helper cell differentiation towards TH1 responses [9]. Little is

known about the molecular mechanisms that underlie the

induction of the TH-17-promoting cytokines by DCs after

fungal infections.

Pattern recognition receptors (PRRs), such as Toll-like receptors

(TLRs) and C-type lectins, sense pathogens through conserved

pattern-associated molecular patterns (PAMPs), which induce

signaling pathways to regulate gene transcription. C-type lectins

are important in fungal recognition by DCs and in induc-

tion of anti-fungal TH1 and TH-17 immune responses [5,10]. The

cell-wall of many fungi, including Candida species (spp), consists of

carbohydrate structures such as chitin, mannan and b-glucan that

are recognized by C-type lectins like dectin-1, dectin-2, DC-

SIGN and mannose receptor [5,11,12]. Triggering of b-glucan

receptor dectin-1 by C. albicans induces both TH1 and TH-17

immune responses by DCs through Syk-dependent NF-kB

activation [10,13,14]. Syk induces the assembly of a scaffold

consisting of the caspase recruitment domain 9 (CARD9) protein,

B cell lymphoma 10 (Bcl10) and mucosa-associated lymphoid-

tissue lymphoma-translocation gene 1 (Malt1) [13,15]. This

CARD9-Bcl10-Malt1 scaffold couples dectin-1 in human to the

canonical NF-kB pathway by activating NF-kB subunit p65 and

c-Rel [10,13], whereas dectin-1 triggering also leads to activation

of the non-canonical NF-kB RelB pathway [10]. The balance

between p65 and RelB activity is controlled by a distinct Raf-1-

dependent pathway that thereby dictates expression of IL-12p70,

IL-1b and IL-23 [10]. It is unclear how the CARD9-Bcl10-Malt1

complex is involved in the activation of the different NF-kB

subunits and how this affects TH-17 differentiation. Although

dectin-1-deficient people are more susceptible to mucocutaneous

fungal infection, CARD9 deficiency in human causes a more

pronounced phenotype with chronic mucoctaneous as well as

invasive fungal infections [16,17]. These studies suggest that

dectin-1 is not the only receptor that couples CARD9-Bcl10-

Malt1 to the defense against fungi. Indeed, dectin-2 interacts with

C. albicans through mannan structures present on both yeast and

hyphal forms [18,19] and a recent study shows that dectin-2 is

involved in the induction of TH-17 responses to C. albicans in mice
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[19,20]. Dectin-2 indirectly activates Syk through association

with the FcRc chain [12] which results in CARD9-dependent

expression of IL-2, IL-10 and TNF [20]. Thus, both dectin-1 and

dectin-2 are involved in TH-17 development through Syk and

CARD9 but the underlying mechanisms and involvement of

Bcl10 and Malt1 remain unclear. It is also unclear whether

dectin-1 and dectin-2 are required for a general anti-fungal

response to all Candida species.

Here we demonstrate that dectin-1 and dectin-2 convergently

contribute to anti-fungal TH-17 immunity by inducing IL-1b and

IL-23 production. Both dectin-1 and dectin-2 triggering leads to

Malt1 activation, which specifically activates NF-kB subunit c-Rel

that is pivotal to the transcriptional activation of the Il1b and Il23p19

genes. Syk-dependent recruitment of CARD9 and Bcl10 upon

dectin-1 triggering is crucial for activation of all NF-kB subunits,

while recruitment of Malt1 and activation of its paracaspase activity

is distinctively required for c-Rel but not p65 or RelB activation. In

contrast to dectin-1, dectin-2 triggering activates only c-Rel, which

is also dependent on Malt1 signaling, signifying a specialized

function for dectin-2 in TH-17 immunity. Simultaneous triggering

of dectin-1 and dectin-2 by pathogenic fungi promotes the

expression of IL-1b and IL-23 to boost TH-17-mediated cellular

responses, whereas Malt1 inhibition after Candida infection

markedly reduces TH-17 polarization. Thus, Malt1 activation links

dectin-1 and dectin-2 to the c-Rel-dependent expression of IL-1b
and IL-23 and directs adaptive anti-fungal immunity.

Results

Dectin-1 signaling via Malt1 affects IL-1b, IL-23p19, IL-6
and IL-12p35 expression

The recruitment of the CARD9-Bcl10-Malt1 complex by Syk

links dectin-1 on DCs to NF-kB activation, thereby controlling

anti-fungal TH-17 immunity [10,13–15]. In mice, the pivotal role

for Syk and CARD9 in dectin-1 signaling has been established

using knock-out models [13,14], while, in contrast, little is known

about their role in regulating human adaptive immunity. Here we

investigated the role of the CARD9-Bcl10-Malt1 module in

relaying signals from dectin-1 in human primary DCs to induce

cytokine responses. We used the b-glucan curdlan, which is a

specific ligand for dectin-1 and induces Syk activation in both mice

and human [10,14]. We silenced Syk, CARD9, Bcl10 and Malt1

by RNA interference (Figure S1) and analyzed expression of

cytokines involved in TH1 and TH-17 polarization. Expression of

IL-1b, IL-23p19, IL-6, IL-12p35 and IL-12p40 mRNA was

completely abrogated by Syk, CARD9 as well as Bcl10 silencing

(Figure 1A and 1B). Notably, Malt1 silencing had distinct effects

on the different cytokines; IL-1b and IL-23p19 mRNA expression

was strongly decreased, whereas IL-6 and IL-12p35 mRNA was

enhanced and IL-12p40 mRNA expression was unaffected by

Malt1 silencing (Figure 1B). TLR4-dependent cytokine expres-

sion was unaffected by silencing of either Syk, CARD9, Bcl10 or

Malt1 (Figure S2). These data show that Malt1 has a very

distinctive function by inducing the TH-17-polarizing cytokines IL-

23 and IL-1b, whereas both CARD9 and Bcl10 are more

generally required for all dectin-1-induced cytokine responses.

Malt1 controls c-Rel activation by dectin-1
The distinct functions of CARD9, Bcl10 and Malt1 in cytokine

induction after dectin-1 triggering led us to investigate their

functions in the activation of NF-kB. Dectin-1 triggering activates

all NF-kB subunits in a Syk-dependent manner, which is crucial to

dectin-1-induced cytokine responses [10]. We first determined

nuclear translocation and subsequent DNA binding of the different

subunits after dectin-1 triggering. NF-kB dimers are normally

retained inactive in the cytoplasm and translocate into the nucleus

upon activation [21]. In control-silenced DCs, dectin-1 triggering

by curdlan resulted in activation of p65, c-Rel, p52 and RelB, while

p50 DNA binding could already be detected in unstimulated cells

(Figure 2A). Silencing of either CARD9 or Bcl10 in DCs

completely impaired activation of p65, c-Rel, RelB and p52 after

curdlan stimulation (Figure 2A). Strikingly, Malt1 silencing

specifically abrogated c-Rel activation (Figure 2A), whereas

nuclear translocation of the other subunits was unaffected

(Figure 2A). Immunofluorescence stainings showed that Malt1

silencing interfered with the nuclear translocation of c-Rel but

neither with p65 nor RelB (Figure 2B). These data strongly suggest

that Malt1 is required for selective activation of c-Rel-containing

NF-kB dimers, whereas recruitment of CARD9 and Bcl10 are an

absolute requirement for activation of all NF-kB subunits.

c-Rel activation by Malt1 induces TH-17-polarizing
cytokines IL-1b and Il-23

We next used chromatin immunoprecipitation (ChIP) assays to

investigate the effect of Malt1-induced c-Rel activation on the

DNA binding of the NF-kB subunits to different cytokine

promoters. Our data show that the NF-kB site of the Il1b

promoter was solely occupied by c-Rel, while both c-Rel and p65

were bound to the Il23, Il6 and Il12a promoters after curdlan

stimulation of control-silenced DCs, albeit in different ratios

(Figure 2C). Malt1 silencing completed abrogated binding of c-

Rel to the Il1b, Il23, Il6 and Il12a promoters after dectin-1

triggering (Figure 2C), consistent with a pivotal role for Malt1-

mediated signaling in c-Rel activation. The absence of c-Rel

activation allowed binding of p65 to the promoters as is evident

from the higher p65 association with the different promoters

(Figure 2C). Notably, c-Rel binding to the Il1b promoter was

completely replaced by p65 binding after Malt1 silencing

(Figure 2C). This suggests that the Il1b promoter is preferentially

bound by c-Rel and that c-Rel is a stronger activator of Il1b

transcription than p65, since c-Rel replacement by p65 after Malt1

Author Summary

Fungal infections are a major health threat and the
incidence is growing worldwide. There is a need for
efficient antifungal vaccines. Adaptive immune responses
and in particular T helper cell type 17 (TH-17) responses are
crucial in the defence against fungal infections. Human
dendritic cells (DCs) induce TH-17 responses after interac-
tion with fungi. DCs express C-type lectins dectin-1 and
dectin-2 that interact with the carbohydrate structures
present in the cell-wall of fungi. It is unclear how signaling
by these C-type lectins leads to specific TH-17 responses.
Here we demonstrate that the signaling molecule Malt1
present in the CARD9-Bcl10-Malt1 complex is responsible
for TH-17 induction by selectively activating the NF-kB
transcription factor c-Rel, which drives transcription of the
TH-17-polarizing cytokines. Inhibition of either Malt1 or c-
Rel prevents TH-17 induction in response to fungi.
Furthermore, we show that the C-type lectin dectin-2
selectively activates c-Rel, signifying a specialized TH-17-
enhancing function for this C-type lectin. Thus, novel
vaccination strategies that target dectin-2 or activate Malt1
can induce predominant TH-17 responses. Since aberrant
TH-17 responses underlie the pathology of atopic derma-
titis and various autoimmune diseases, Malt1 is a rational
therapeutic target to attenuate anomalous adaptive
immune responses.

Malt1 Controls Antifungal TH-17 Immunity via c-Rel
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silencing resulted in significantly reduced IL-1b expression

(Figure 1B). While Malt1 silencing abolished c-Rel binding to

both the Il23 and Il12a promoter after dectin-1 triggering, loss of

c-Rel activation had opposite effects on Il23 and Il12a transcrip-

tion as IL-23p19 mRNA levels were severely decreased, while IL-

12p35 mRNA was enhanced (Figure 1B). These results are

consistent with our previous findings showing that c-Rel is a

stronger transactivator of Il23 but a weaker transactivator of Il12a

transcripton than p65 [10]. IL-6 expression was enhanced after

Malt1 silencing (Figure 1B), suggesting that c-Rel functions as an

inhibitory factor when bound to the Il6 promoter. The Il12b

promoter was not bound by c-Rel in either control- or Malt1-

silenced cells after curdlan stimulation (Figure 2C), consistent

with the similar IL-12p40 mRNA levels in both control- and

Malt1-silenced cells after dectin-1 triggering (Figure 1B).

In order to further demonstrate the importance of c-Rel in the

transcriptional regulation of the Il1b, Il23, Il6 and Il12a genes, we

measured cytokine expression in c-Rel-silenced DCs (Figure S1)

after curdlan stimulation (Figure 2D). Similar to Malt1 silencing,

c-Rel silencing strongly decreased IL-1b and IL-23p19 mRNA,

while enhancing IL-6 and IL-12p35 mRNA levels compared to

control-silenced cells after dectin-1 triggering (Figure 2D). IL-

12p40 mRNA expression was independent of c-Rel activation

(Figure 2D), as was LPS-induced cytokine expression (Figure
S2). These results strongly suggest that Malt1-mediated c-Rel

activation leads to the expression of IL-1b and IL-23, key

cytokines in TH-17 differentiation.

Malt1 proteolytic activity is required for dectin-1-induced
c-Rel-dependent cytokine expression

Since Malt1 has paracaspase activity [22,23], we next

investigated whether the adaptor or protease function of Malt1

is involved in the selective activation of c-Rel after dectin-1

triggering. We used z-VRPR-FMK, a compound which blocks the

proteolytic activity of Malt1 [22]. Inhibition of Malt1 proteolytic

activity completely abolished activation of c-Rel without affecting

the other NF-kB subunits (Figure 3A), which is similar to Malt1

silencing (Figure 2A), Immunofluoresence stainings confirmed

that Malt1 inhibition specifically interferes with nuclear translo-

cation of c-Rel after curdlan stimulation (Figure S3). Malt1

paracaspase inhibition also markedly reduced both IL-1b and IL-

23p19 mRNA levels and slightly enhanced IL-6 and IL-12p35

mRNA production after curdlan stimulation (Figure 3B), simi-

larly to Malt1 silencing (Figure 1B). IL-12p40 mRNA production

was neither dependent on Malt1 expression nor activation

(Figure 3B). We next measured cytokine production and found

that Malt1 inhibition severely reduced IL-1b and IL-23 protein

expression, without affecting IL-12p70 expression and only slightly

enhancing IL-6 expression (Figure 3C), indicating that dectin-1-

induced cytokine expression is primarily regulated at the

transcriptional level. These results show that Malt1 protease

activity is required for specific c-Rel activation and plays a central

role in the induction of TH-17-polarizing cytokines by dectin-1.

Malt1 directs expression of TH-17-polarizing cytokines
during Candida spp. infection

Dectin-1 plays an important role in anti-fungal immunity

through the induction of TH1 and TH-17 differentiation [10,14].

Since Candida albicans infections are amongst the most common

causes of invasive fungal infections in immunocompromised

patients [24,25], we used two different C. albicans strains to

investigate the importance of Malt1 signaling in anti-fungal

immune responses. Consistent with its function in the induction

of TH-17-polarizing cytokines, Malt1 activation is required for

expression of IL-1b and IL-23 by DCs in response to both C.

albicans strain CBS8781 and CBS2712 (Figure 4A). As observed

with curdlan stimulation, the expression of IL-6 was slightly

upregulated as a result of Malt1 protease inhibition, whereas IL-

12p70 production was unaffected by Malt1 signaling after C.

albicans stimulation (Figure 4A). To elucidate the contribution of

dectin-1 signaling to the Malt1-dependent cytokines responses,

we treated DCs with C. albicans in the presence of blocking dectin-

1 antibodies. Notably, we observed that C. albicans CBS8781-

induced cytokine expression was completely abrogated after

blocking dectin-1, whereas cytokine production after C. albicans

CBS2712 stimulation was only partially inhibited by dectin-1

antibodies (Figure 4A). Malt1 inhibition decreased C. albicans

CBS2712-induced IL-1b and IL-23 expression more strongly

than dectin-1 inhibition (Figure 4A). These results suggest that

fungal infections trigger not only dectin-1 but also other receptors

to induce anti-fungal TH-17 responses via Malt1. To further

investigate this, we used two different Candida species, C. lusitaniae

and C. nivarienis, both emerging pathogenic fungi causing

opportunistic infections in transplant and immunocompromised

Figure 1. Dectin-1-induced cytokine expression requires Syk, CARD9 and Bcl10, whereas Malt1-mediated signaling enhances IL-1b
and IL-23p19, but decreases IL-6 and IL-12p35 expression. (A and B) Quantitative real-time PCR for indicated mRNAs in curdlan-stimulated
DCs after Syk, CARD9 (A), Bcl10 and Malt1 (B) silencing by RNA interference (siRNA). Expression is normalized to GAPDH and set at 1 in curdlan-
stimulated cells. Data are mean 6 s.d. of four independent experiments, *p,0.05 and **p,0.01 (Student’s t-test).
doi:10.1371/journal.ppat.1001259.g001

Malt1 Controls Antifungal TH-17 Immunity via c-Rel
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patients [24,26]. C. lusitaniae CBS4413 induced cytokine produc-

tion in a dectin-1-dependent manner, while C. nivariensis

CBS9983 was only partially dependent on dectin-1 signaling for

the production of IL-1b, IL-23, IL-6 and IL-12p70 (Figure 4B).

Both IL-1b and IL-23 production by C. lusitaniae and C. nivariensis

was largely dependent on Malt1 protease activity (Figure 4B).

Noteworthy, Candida spp. that trigger Malt1 activation via dectin-

1 in combination with other unidentified receptor(s) induce

higher levels of IL-1b and IL-23 in DCs than those that trigger

only dectin-1 (Figure 4A and 4B). Similar to the C. albicans

Figure 2. Malt1 signaling by dectin-1 is specifically required for c-Rel-dependent cytokine expression. (A) DNA binding of NF-kB
subunits in nuclear extracts of curdlan-stimulated DCs after Malt1 silencing by RNA interference (siRNA). Graphs are representative of three
independent experiments. (B) Translocation of c-Rel, p65 or RelB (red) into the nucleus (Hoechst staining, blue; colocalization (Merge, pink)) in
curdlan-stimulated DCs after Malt1 silencing. Stainings are representative of two independent experiments. (C) ChIP assays were performed to
determine binding of p65, c-Rel and RelB to NF-kB binding motifs of the Il1b, Il23p19, Il12a, Il12b and Il6 promoters. Protein-DNA complexes were
immunoprecipitated from sheared chromatin isolated from para-formaldehyde-fixed curdlan-stimulated DCs after Malt1 silencing by RNA
interference (siRNA). Immunoprecipitation with mouse IgG served as a negative control. Quantitative real-time PCR reactions for indicated regions
were performed. Levels are normalized with respect to the ‘input DNA’ sample, which had not undergone immunoprecipitation; results are expressed
as the % input DNA. Data are mean 6 s.d. of two independent experiments, *p,0.05 and **p,0.01 (Student’s t-test). (D) Quantitative real-time PCR
for indicated mRNAs in curdlan-stimulated DCs after c-Rel silencing by RNA interference (siRNA). Expression is normalized to GAPDH and set at 1 in
curdlan-stimulated cells. Data are mean 6 s.d. of four independent experiments, **p,0.01 (Student’s t-test).
doi:10.1371/journal.ppat.1001259.g002

Malt1 Controls Antifungal TH-17 Immunity via c-Rel
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strains, C. lusitaniae and C. nivariensis stimulation resulted in slightly

enhanced IL-6 expression after Malt1 inhibition, while IL-12p70

was unaffected (Figure 4B). These data suggest that c-Rel

activation by Malt1 signaling controls anti-fungal TH-17

immunity to Candida spp.

Dectin-2 contributes to cytokine response during
Candida spp. infection

We next set out to identify the fungal PRR(s) on DCs that are

triggered by C. albicans CBS2712 and C. nivariensis to induce Malt1

activation independently of dectin-1. The C-type lectin dectin-2

has been shown to participate in fungal TH-17 immunity in mice

[19,20]. We explored a role for dectin-2 in cytokine responses to

Candida spp. by using blocking antibodies against dectin-2.

Notably, induction of IL-1b and IL-23p19 mRNA by both C.

albicans CBS2712 and C. nivariensis was partially abolished by

dectin-2 antibodies, while blocking both dectin-1 and dectin-2

completely abrogated expression of IL-1b and IL-23p19

(Figure 5). These data strongly suggest that dectin-2 signaling

contributes together with dectin-1 to the induction of these TH-17-

Figure 3. Malt1 paracaspase activity is required for c-Rel activation and cytokine induction by dectin-1. (A) DNA binding of NF-kB
subunits in nuclear extracts of curdlan-stimulated DCs after inhibition of Malt1 paracaspase activity by z-VRPR-FMK. Data are representative of three
independent experiments. (B) Quantitative real-time PCR for indicated mRNAs in curdlan-stimulated DCs after Malt1 paracaspase inhibition.
Expression is normalized to GAPDH and set at 1 in curdlan-stimulated cells. Data are mean 6 s.d. of three independent experiments, **p,0.01
(Student’s t-test). (C) Cytokine production was determined by ELISA in supernatants of DCs stimulated with curdlan in the absence or presence of
Malt1 paracaspase inhibitor. Data are mean 6 s.d. of duplicate cultures, and are representative of five independent experiments, *p,0.05 and
**p,0.01 (Student’s t-test).
doi:10.1371/journal.ppat.1001259.g003

Figure 4. Malt activation controls IL-1b and IL-23 production in response to Candida spp. (A and B) Cytokine production was determined
by ELISA in supernatants of DCs stimulated with Candida albicans spp. (A), C. nivariensis or C. lusitaniae (B) in the absence or presence of Malt1
paracaspase inhibitor z-VRPR-FMK or blocking dectin-1 antibodies. Data are representative of three independent experiments.
doi:10.1371/journal.ppat.1001259.g004

Malt1 Controls Antifungal TH-17 Immunity via c-Rel
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polarizing cytokines by C. albicans CBS2712 and C. nivariensis.

Blocking dectin-2 triggering by C. albicans CBS2712 or C. nivariensis

slightly increased IL-6 but greatly enhanced IL-12p35 mRNA

expression (Figure 5), most likely reflecting the negative influence

of c-Rel binding to the respective promoters on Il6 and Il12a

transcription. C. nivariensis-induced IL-6 and IL-12p35 mRNA

expression was dependent on both dectin-1 and dectin-2, while C.

albicans CBS2712 induced IL-6 and IL-12p35 expression via

dectin-1, as blocking both dectin-1 and dectin-2 had no additional

effects compared to blocking dectin-1 alone (Figure 5). IL-12p40

mRNA expression by C. albicans CBS2712 and C. nivariensis was

independent of dectin-2 triggering (Figure 5). These data suggest

that dectin-2 signaling through Malt1 controls only c-Rel-

dependent gene expression without affecting c-Rel-independent

transcription. The residual expression of IL-6, IL-12p35 and IL-

12p40 induced by C. albicans CBS2712 after either blocking dectin-

1 or dectin-1 plus dectin-2 suggests additional involvement of

other receptors, such as TLRs (Figure 5A). As expected, dectin-2

antibodies did not interfere with cytokine expression induced by C.

albicans CBS8781 and C. lusitaniae, since cytokine induction was

completely inhibited by blocking dectin-1 antibodies (Figure 4
and 5). Cytokine protein levels confirmed the mRNA expression

data (Figure S4). Our data demonstrate that both dectin-1 and

dectin-2 contribute to anti-fungal TH-17-polarizing cytokine

responses to various Candida spp.

Malt1 relays dectin-2 signals to induce c-Rel-dependent
cytokine expression

We next triggered dectin-2-FcRc signaling by crosslinking

dectin-2 with antibodies and investigated cytokine expression

induced by human DCs. Dectin-2 crosslinking induced high levels

of IL-1b and IL-23p19 mRNA expression (Figure 6A). Remark-

ably, dectin-2 crosslinking did neither induce IL-6, IL-12p35 nor

IL-12p40 mRNA expression (Figure 6A), consistent with our

observations when blocking dectin-2 binding by Candida spp.

(Figure 5) and strongly suggesting that dectin-2 triggering

specifically induces IL-1b and IL-23p19. These results confirm

that dectin-1 and dectin-2 signaling converge to boost the

expression of TH-17-polarizing cytokines, as we observed after

Candida spp. stimulation.

We next investigated whether dectin-2 crosslinking induces NF-

kB activation. Notably, dectin-2 triggering resulted in the specific

activation of c-Rel, whereas the other NF-kB subunits p65, RelB

and p52 were not activated (Figure 6B). Consistently, c-Rel-

silenced DCs exhibited a defect in the induction of IL-1b and IL-

23p19 mRNA expression after dectin-2 crosslinking (Figure 6C).

We next silenced Malt1 expression to investigate whether dectin-2-

FcRc signaling, like dectin-1, employs Malt1 to specifically

activate c-Rel and induce c-Rel-dependent cytokine expression.

Similar to c-Rel silencing, Malt1 silencing completely abolished

IL-1b and IL-23p19 mRNA production in response to dectin-2

crosslinking (Figure 6C). These data demonstrate that dectin-2

has a specialized function in adaptive immunity and specifically

contributes to the induction of IL-1b and IL-23p19, emphasizing

the importance of the Malt1-c-Rel activation axis in TH-17

immunity.

Malt1 signaling skews T helper cell polarization towards
TH-17

Since Malt1 links dectin-1 and dectin-2 to the expression of the

TH-17-polarizing cytokines IL-1b and IL-23 via the activation of

c-Rel, we investigated whether Malt1 activation affects adaptive

immunity to Candida spp. We first co-cultured curdlan-primed

DCs with CD4+ T cells and measured IL-17 secretion after 5–12

days of co-culture [7]. Malt1 inhibition markedly reduced the

capacity of curdlan-primed DCs to induce IL-17 expression in

CD4+ T cells (Figure 7A, 7B and 7C). Thus, Malt1 activity is

essential for the induction of TH-17-polarizing cytokines in DCs

via dectin-1 triggering and subsequent TH-17 skewing. The ability

of DCs primed by the different Candida spp. to promote IL-17

expression in CD4+ T cells was completely blocked when Malt1

activation was inhibited in the DCs (Figure 7D and 7E). This

effect of Malt1 inhibition on the ability of Candida-primed DCs to

induce TH-17 polarization was irrespective of the involvement of

either dectin-1 alone (C. albicans CBS8781 and C. lusitaniae) or

combined dectin-1 and dectin-2 triggering (C. albicans CBS2712

and C. nivariensis), consistent with a general role for Malt1 in

inducing the TH-17-polarizing cytokines IL-1b and IL-23. Thus,

the marked impact of Malt1 inhibition on IL-1b and IL-23p19

expression in response to fungal infections translates to a block in

Figure 5. Dectin-1 and dectin-2 contribute to Candida spp.-induced cytokine expression. (A and B) Quantitative real-time PCR for
indicated mRNAs in DCs stimulated with Candida albicans spp. (A), C. nivariensis or C. lusitaniae (B) in the absence or presence of blocking antibodies
against dectin-1 and/or dectin-2. Expression is normalized to GAPDH and set at 1 in curdlan-stimulated cells. Data are mean 6 s.d. of four
independent experiments, *p,0.05 and **p,0.01 (Student’s t-test).
doi:10.1371/journal.ppat.1001259.g005
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TH-17 immunity. Our data demonstrate that Malt1 signaling to c-

Rel activation drives anti-fungal TH-17 responses.

Discussion

C-type lectins are amongst the most important innate receptors

on DCs to induce anti-fungal TH-17 immunity [5,11,14].

Expression of cytokines upon dectin-1 triggering by fungi requires

NF-kB activation through Syk-dependent CARD9-Bcl10-Malt1

signaling [13,15]. Here we demonstrate that Malt1 activation by

dectin-1 and dectin-2 on human DCs induces the expression of

TH-17-polarizing cytokines IL-1b and IL-23 through selective

activation of the NF-kB subunit c-Rel. c-Rel is crucial for optimal

transcription of the Il1b and Il23p19 genes. Dectin-1-induced

activation of p65, RelB and c-Rel is completely dependent on the

recruitment of CARD9 and Bcl10. Notably, Malt1 through its

proteolytic paracaspase activity is specifically involved in activation

of c-Rel, but dispensable for p65 and RelB activation. Malt1

activation of c-Rel is similarly essential in the induction of TH-17-

polarizing cytokines by dectin-2. Strikingly, dectin-2 signaling,

unlike dectin-1, only induces strong c-Rel, but not p65 and RelB

activation, strongly suggestive of a specific TH-17 polarizing

function of dectin-2. Furthermore, the involvement of dectin-1 and

detcin-2 in anti-fungal immunity by human DCs depends on the

Candida species. Our data strongly suggest that dectin-2 is crucial

in recognition of some pathogenic Candida species to boost dectin-

1-induced TH-17 responses via Malt1. Thus, Malt1-dependent

activation of c-Rel dictates adaptive TH-17 immunity to fungi by

dectin-1 and dectin-2.

Protective immunity against fungal infections via TH-17 cellular

responses requires the expression of IL-1b, IL-23 and IL-6 by

DCs. Here we demonstrated that selective activation of NF-kB

family member c-Rel by dectin-1 and dectin-2 signaling in

response to fungi was essential to expression of IL-1b and IL-23

and consequently TH-17 immunity. Our data showed that loss of

c-Rel binding to the Il1b and Il23p19 promoters strongly decreased

IL-1b and IL-23p19 expression even though p65 bound to the NF-

kB binding sites in the absence of c-Rel activation. These data

further showed that c-Rel was the stronger activator of Il1b and

Il23 transcription. Furthermore, c-Rel had an inhibitory effect on

Il6 transcription, although p65-driven IL-6 expression allows for

sufficient IL-6 to direct TH-17 polarization.

Both dectin-1 and dectin-2 triggering resulted in c-Rel

activation and c-Rel-dependent IL-1b and IL-23 expression.

Engagement of dectin-1 by fungal ligands leads to phosphorylation

of the immunoreceptor tyrosine-based activation motif (ITAM)-

like sequence within its cytoplasmic domain [15,27] and

subsequent association of the spleen tyrosine kinase Syk. Syk

activation by dectin-1 is required for NF-kB activation via the

assembly of the CARD9-Bcl10-Malt1 module [13,14]. Unlike

dectin-1, dectin-2 requires pairing with the adaptor molecule

FcRc to induce signaling [12,20]. Dectin-2 triggering results in

phosphorylation of the ITAM of FcRc and activation of Syk

signaling, which induces cytokine expression [20]. Dectin-2

signaling is CARD9-dependent, however a role for Bcl10 and

Malt1 remains to be established [20]. In antigen receptor

signaling, oligomerization of CARD11 (CARMA1) triggers the

formation of a scaffold that physically bridges the CARD11-Bcl10-

Malt1 complex with downstream signaling effectors, such as

TRAFs and TAK1, to activate the NF-kB-regulating IKK

complex [28]. Here we demonstrated that c-Rel activation by

dectin-1 and dectin-2 is completely dependent on Malt1

activation. Malt1 is an unique protein as it is the only human

paracaspase known [22,23] and our data showed that its

paracaspase activity was essential to the activation of c-Rel by

dectin-1 and dectin-2. Malt1 has a distinctive function within the

Figure 6. Dectin-2 signaling induces Malt1- and c-Rel-dependent IL-1b and IL-23p19 expression. (A) Quantitative real-time PCR for
indicated mRNAs in DCs stimulated with crosslinked dectin-2 antibodies or LPS. In (A–C), goat-anti-mouse IgG was coated as a control for aspecific
activation. Expression is normalized to GAPDH and set at 1 in LPS-stimulated cells. Data are mean 6 s.d. of at least four independent experiments. (B)
DNA binding of NF-kB subunits in nuclear extracts of dectin-2-triggered DCs. Data are representative of two independent experiments. (C)
Quantitative real-time PCR for indicated mRNAs in DCs stimulated with crosslinked dectin-2 antibodies after c-Rel silencing or Malt1 inhibition with
paracaspase inhibitor z-VRPR-FMK. Goat-anti-mouse IgG was coated as a control for non-specific activation. Expression is normalized to GAPDH and
set at 1 in LPS-stimulated cells. Data are mean 6 s.d. of two independent experiments, *p,0.05 (Student’s t-test).
doi:10.1371/journal.ppat.1001259.g006
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CARD9-Bcl10-Malt1 complex induced upon dectin-1 and dectin-

2 triggering since silencing of CARD9 and Bcl10 by RNA

interference completely abrogated the activation of all NF-kB

subunits, while Malt1 silencing selectively abrogated c-Rel

activation. It is unclear how Malt1 specifically activates c-Rel. A

similar observation has been reported for B cell receptor signaling,

which uses the CARD11-Bcl10-Malt1 complex for NF-kB

activation [29], while Malt1 is involved in RelB activation after

BAFF stimulation in specific B cell subsets [30]. In T cell receptor

signaling, the paracaspase activity of Malt1 partially accounts for

the amount of NF-kB activation [22], which might reflect the c-

Rel-dependency in T cell receptor responses. Only two substrates

for Malt1 are known, its binding partner Bcl10 and A20 that

functions as an inhibitor of NF-kB activation [22,23], but it

remains to be determined if they have any role in the selective

activation of c-Rel via Malt1. We showed that dectin-2 signaling

only induced strong c-Rel activation, while dectin-1 triggering

activated all NF-kB subunits; possibly the differential use of

downstream molecules like TRAFs by dectin-1 and dectin-2 might

underlie these differences in NF-kB activation.

Crosstalk between signaling pathways triggered by recognition

of different PAMPs by various PRRs is essential to the induction of

immune responses [5,6,11]. Here we demonstrated that dectin-1

and dectin-2 play distinct roles in immunity to fungi. While dectin-

1 triggering induced cytokines involved in promoting both TH1

and TH-17 polarization, dectin-2 triggering resulted specifically in

IL-1b and IL-23p19 expression, which enhanced IL-1b and IL-23

expression in response to different pathogenic Candida spp. This

suggests that dectin-1 functions more broadly as an anti-fungal

receptor inducing protective immunity, while dectin-2 is more

specialized in boosting TH-17 cellular responses. Our data also

demonstrated that even related pathogenic fungi triggered

different sets of PRRs, likely contributing to tailoring of

pathogen-specific immunity. C. albicans strain CBS8781 and C.

lusitaniae induced cytokine expression in a dectin-1-dependent

manner. In contrast, C. albicans strain CBS2712 and C. nivariensis

triggered both dectin-1 and dectin-2 and showed higher IL-1b and

IL-23 responses, strongly suggesting that dectin-1 and dectin-2

signaling pathways converge to enhance TH-17 immunity. Other

Candida species might preferentially trigger dectin-2 but not dectin-

1 for IL-1b and IL-23p19 protein expression as shown in the study

of Saijo et al. [19]. Notably, C. albicans CBS2712 also induced

dectin-1- and dectin-2-independent expression of IL-6, IL-12p35

and IL-12p40. The contribution of TLR signaling, especially via

TLR2, and collaboration with dectin-1 signaling has previously

been recognized in cytokine responses in Candida infections

[11,31]. However, C-type lectin triggering seems to be more

specialized in IL-23p19 and IL-1b induction. The situation in

mice might be more complex as murine TLRs seem to induce c-

Rel activation [32], while human TLRs do not [33]. Our data

Figure 7. Malt1 signaling skews T helper cell polarization towards TH-17. (A–E) T helper cell polarization was assessed by ELISA by
measuring IL-17 production in supernatants at day 5 (A) or by flow cytometry by staining for intracellular IL-17 or IFNc expression at day 12 after PMA
plus ionomycin restimulation (B–E), after co-culture of memory CD4+ T cells with DCs left unstimulated (iDC) or primed with curdlan (A–C) or Candida
spp. (D and E) in the absence or presence of Malt1 paracaspase inhibitor z-VRPR-FMK. In (B) and (D) the percentage of IL-17-producing T cells are
shown, corresponding to the upper left and right quadrants of (C) and (E), respectively. Data are mean 6 s.d. of duplicate cultures, *p,0.05 (Student’s
t-test), and are representative of three (A) or two (B–E) independent experiments.
doi:10.1371/journal.ppat.1001259.g007
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emphasize that immune responses are tailored not only to

pathogens from different species but even within species. Thus,

interpretation of data obtained with a single pathogen should be

done with caution. Research into the role of dectin-1 in fungal

infections using knock-out mice has resulted in conflicting data

[34,35] and the use of different yet related fungi might underlie

these differences. Genetic variation within the Candida clade might

not only account for differences in pathogenicity [36] but also for

the differential recognition by innate receptors. We have

demonstrated here that even closely related C. albicans strains

trigger different sets of PRRs to activate adaptive immune

responses.

Malt1-mediated c-Rel activation might be a general mechanism

for induction of protective TH-17 immunity against fungi and

other microbes, since the Card9-Bcl10-Malt1 complex might

couple other C-type lectins besides dectin-1 and dectin-2 to NF-kB

activation. Furthermore, the carbohydrate specificities of dectin-1

and dectin-2 for b-glucans and high mannoses, respectively, signify

their importance in more general anti-fungal immunity against

species from the phylum Ascomycota that contain mannan, chitin

and glucan structures in their cell-wall [37,38]. Many pathogenic

ascomycetes such as Candida spp., Aspergillus spp., Coccidiodides spp.,

Pneumocystis jirovecii (previously known as Pneumocystis carinii),

Histoplasma capsulatum, Trichophyton rubrum and Microsporum audouinni

have been identified as dectin-1 and/or dectin-2 ligands

[12,20,34,35,39–41]. In contrast, the cell-wall of fungi from the

phylum Basidiomycota, such as Cryptococcus and Malassezia spp, differs

from that of ascomycetes, as it is enfolded in a glucuronic acid-rich

carbohydrate capsule or consists of lipophilic structures, respec-

tively [42,43]. TH-17 responses to Cr. neoformans have been

reported [44] but are not mediated by dectin-1 [45].

Thus, dectin-1 and dectin-2 control c-Rel activation distinc-

tively via Malt1 activation to induce IL-1b and IL-23 expression

and as such tailor TH-17 immune responses against fungal

pathogens. Given the pivotal role of TH-17 responses not only in

protective immunity against fungi but also in the pathology of

human autoimmune diseases like Crohn’s disease, ulcerative

colitis, psoriasis and in vaccine development against tuberculosis

[3,46], our results might benefit therapeutic developments as

Malt1 presents a rational target for immunomodulatory drugs.

Materials and Methods

Cells, stimulation, inhibition and RNA interference
This study was performed in accordance with the ethical

guidelines of the Academic Medical Center. Immature DCs (iDC,

day 6 and 7) were generated as described previously [10]. DCs

were stimulated with 10 mg/ml curdlan (Sigma), heat-killed

Candida spp. [47] (multiplicity of infection (MOI) 10) and 10 ng/

ml LPS from Salmonella typhosa (Sigma). Dectin-2 triggering was

induced by pre-incubating DCs for 2 h at room temperature with

5 mg/ml anti-dectin-2 (MAB3114; R&D Systems), followed by

crosslinking on goat-anti-mouse IgG (115-006-0710; Jackson)-

coated culture plates. Cells were preincubated with blocking

antibodies or inhibitor for 2 h with 20 mg/ml anti-dectin-1

(MAB1859; R&D Systems), 20 mg/ml anti-dectin-2 (MAB3114;

R&D Systems) or 75 mM z-VRPR-FMK (Malt1 inhibitor [22];

Alexis). DCs were transfected with 25 nM siRNA using transfec-

tion reagent DF4 (Dharmacon), and used for experiments 72 h

after transfection. ‘SMARTpool’ siRNAs used were: Syk (M-

003176-03), CARD9 (M-004400-01), Bcl10 (M-004381-02), Malt1

(M-005936-02), c-Rel (M-004768-01) and non-targeting siRNA

(D-001206-13) as a control (Dharmacon). This protocol resulted in

nearly 100% transfection efficiency as determined by flow

cytometry of cells transfected with siGLO-RISC free-siRNA (D-

001600-01) and did not induce IFN responses as determined by

quantitative real-time PCR analysis [10]. Silencing of expression

was verified by real-time PCR and flow cytometry (Figure S1).

Quantitative real-time PCR
mRNA isolation, cDNA synthesis and PCR amplification with

the SYBR green method in an ABI 7500 Fast PCR detection

system (Applied Biosystems) were performed as described [10].

Specific primers were designed using Primer Express 2.0 (Applied

Biosystems; Table S1). The Ct value is defined as the number of

PCR cycles where the fluorescence signal exceeds the detection

threshold value. For each sample, the normalized amount of target

mRNA was calculated from the obtained Ct values for both target

and GAPDH mRNA with Nt = 2Ct(GAPDH)2Ct(target). The relative

mRNA expression was obtained by setting Nt in curdlan- or LPS-

stimulated samples at 1 within one experiment and for each donor.

Cytokine production
Cell culture supernatants were harvested after 28 h of

stimulation and concentrations of IL-1b, IL-23, IL-6 (Invitrogen)

and IL-12p70 (eBioscience) were determined by ELISA.

Chromatin immunoprecipitation (ChIP) assay
ChIP assays were performed using the ChIP-IT Express

Enzymatic kit (Active Motif) to determine occupancy of the

regulatory regions of the Il1b, Il23p19, Il6, Il12a and Il12b

promoters by NF-kB as described by the manufacturer. Protein/

DNA complexes were immunoprecipitated using anti-p65 (3034;

Cell Signaling), anti-c-Rel (4727; Cell Signaling), anti-RelB (4954;

Cell Signaling) or negative control IgG (53010; Active Motif), and

protein G-coated magnetic beads. DNA was purified after reversal

of crosslinks and real-time PCR reactions were then performed

with primer sets spanning the NF-kB binding sites (Table S1).

Primers spanning genomic DNA at cytogenetic location 12 p13.3

(Active Motif) were used as a negative control. To normalize for

DNA input, a sample for each condition was taken along which

had not undergone immunoprecipitation with a specific antibody

(‘input DNA’); the results are expressed as the % input DNA.

Immunofluorescence staining
Stainings were performed as described previously [10] with with

anti-p65, anti-c-Rel or anti-RelB (all from Cell Signaling) followed

by Alexa Fluor 594-conjugated goat anti-rabbit (A11072;

Molecular Probes).

NF-kB DNA binding
Nuclear extracts of DCs were prepared using NucBuster protein

extraction kit (Novagen) and NF-kB DNA binding determined

using TransAM NF-kB family kit (Active Motif).

TH-17 polarization assay
Memory CD4+ T cells were isolated as described previously [7].

iDCs were preincubated for 2 h with inhibitors, activated for 16 h

with curdlan or heat-killed Candida spp. and subsequently co-

cultured with memory CD4+ T cells as described (20,000 T cells/

2000 DCs in the presence of 10 pg/ml Staphylococcus aureus

enterotoxin B (Sigma) [7]. After 5 days of co-culture, supernatants

were harvested and analyzed for IL-17 production by ELISA

(Biosource). Cells were further cultured in the presence of 10 U/

ml IL-2 (Chiron) and resting cells were restimulated after 12 days

with 100 ng/ml PMA (Sigma) and 1 mg/ml ionomycin (Sigma) for

6 h, the last 5 h in the presence of 10 mg/ml brefeldin A (Sigma),
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and analyzed for intracellular cytokine expression by staining with

biotinylated mouse anti-IL-17 (ebio64DE; eBioscience), followed

by incubation with streptavidin-PE (BD Pharmingen) and FITC-

conjugated mouse anti-IFN-c (25723.11; BD).

Statistical analysis
Student’s t-test for paired observations was used for statistical

analyses. Statistical significance was set at a P values of less than

0.05.

Supporting Information

Figure S1 Silencing of Syk, CARD9, Bcl10, Malt1 and c-Rel in

human primary DCs by RNA interference. Indicated proteins

were silenced using specific SMARTpools, and non-targeting

siRNA as a control. Silencing was confirmed by quantitative real-

time PCR (A, C, E, G and I), or by staining and flow cytometry (B,

D, F, H and J). In (A, C, E, G and I), expression is normalized to

GAPDH and set at 1 in control siRNA-treated cells. Data are

mean 6 s.d. of at least four independent experiments (A, C, E, G

and I) or are representative of at least two independent

experiments (B, D, F, H and J).

Found at: doi:10.1371/journal.ppat.1001259.s001 (2.24 MB TIF)

Figure S2 LPS signaling is not affected by Syk, CARD9, Bcl10,

Malt1 and c-Rel silencing. Quantitative real-time PCR of

indicated mRNAs in curdlan-stimulated DCs after Syk, CARD9,

Bcl10, Malt1 and c-Rel silencing by RNA interference (siRNA).

Expression is normalized to GAPDH and set at 1 in curdlan-

stimulated cells. Data are mean 6 s.d. of at least three

independent experiments.

Found at: doi:10.1371/journal.ppat.1001259.s002 (2.22 MB TIF)

Figure S3 Malt1 paracaspase activity is required for c-Rel

activation by dectin-1. Translocation of c-Rel, p65 or RelB (red)

into the nucleus (Hoechst staining, blue; colocalization (Merge,

pink)) in curdlan-stimulated DCs after Malt1 paracaspase

inhibition by z-VRPR-FMK. Stainings are representative of two

independent experiments.

Found at: doi:10.1371/journal.ppat.1001259.s003 (7.54 MB TIF)

Figure S4 Dectin-1 and dectin-2 contribute to Candida spp.-

induced cytokine expression. Cytokine production was determined

by ELISA in supernatants of DCs stimulated with Candida

albicans spp. (A), C. nivariensis or C. lusitaniae (B) in the absence

or presence of blocking antibodies against dectin-1 and/or dectin-

2. Data are representative of two independent experiments.

Found at: doi:10.1371/journal.ppat.1001259.s004 (2.36 MB TIF)

Table S1 Expression primer sequences.

Found at: doi:10.1371/journal.ppat.1001259.s005 (0.05 MB

DOC)
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