12 research outputs found

    The heritability of insomnia from childhood to adolescence: results from a longitudinal twin study

    Get PDF
    Study Objectives: To determine prevalence and heritability of insomnia during middle/late childhood and adolescence; examine longitudinal associations in insomnia over time; and assess the extent to which genetic and environmental factors on insomnia remain stable, or whether new factors come into play, across this developmental period. Design: Longitudinal twin study. Setting: Academic medical center. Patients or Participants: There were 739 complete monozygotic twin pairs (52%) and 672 complete dizygotic twin pairs (48%) initially enrolled and were followed up at three additional time points (waves). Mode ages at each wave were 8, 10, 14, and 15 y (ages ranged from 8-18 y). Interventions: None. Measurements and Results: Clinical ratings of insomnia symptoms were assessed using the Child and Adolescent Psychiatric Assessment (CAPA) by trained clinicians, and rated according to Diagnostic and Statistical Manual of Mental Disorders (DSM)-III-R criteria for presence of ‘clinically significant insomnia’, over four sequential waves. Insomnia symptoms were prevalent but significantly decreased across the four waves (ranging from 16.6% to 31.2%). ‘Clinically significant insomnia’ was moderately heritable at all waves (h2 range = 14% to 38%), and the remaining source of variance was the nonshared environment. Multivariate models indicated that genetic influences at wave 1 contributed to insomnia at all subsequent waves, and that new genetic influences came into play at wave 2, which further contributed to stability of symptoms. Nonshared environmental influences were time-specific. Conclusion: Insomnia is prevalent in childhood and adolescence, and is moderately heritable. The progression of insomnia across this developmental time period is influenced by stable as well as new genetic factors that come into play at wave 2. Molecular genetic studies should now identify genes related to insomnia progression during childhood and adolescence

    Genetic correlation analysis suggests association between increased self reported sleep duration in adults and schizophrenia and type 2 diabetes

    No full text
    Study Objectives: We sought to examine how much of the heritability of self-report sleep duration is tagged by common genetic variation in populations of European ancestry and to test if the common variants contributing to sleep duration are also associated with other diseases and traits. Methods: We utilized linkage disequilibrium (LD)-score regression to estimate the heritability tagged by common single nucleotide polymorphisms (SNPs) in the CHARGE consortium genome-wide association study (GWAS) of self-report sleep duration. We also used bivariate LD-score regression to investigate the genetic correlation of sleep duration with other publicly available GWAS datasets. Results: We show that 6% (SE = 1%) of the variance in self-report sleep duration in the CHARGE study is tagged by common SNPs in European populations. Furthermore, we find evidence of a positive genetic correlation (rG) between sleep duration and type 2 diabetes (rG = 0.26, P = 0.02), and between sleep duration and schizophrenia (rG = 0.19, P = 0.01). Conclusions: Our results show that increased sample sizes will identify more common variants for self-report sleep duration; however, the heritability tagged is small when compared to other traits and diseases. These results also suggest that those who carry variants that increase risk to type 2 diabetes and schizophrenia are more likely to report longer sleep duration

    Seasonality Shows Evidence for Polygenic Architecture and Genetic Correlation With Schizophrenia and Bipolar Disorder

    No full text
    OBJECTIVE: To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. METHOD: Genome-wide association studies (GWASs) were conducted in Australian (between 1988 and 1990 and between 2010 and 2013) and Amish (between May 2010 and December 2011) samples in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered, and the results were meta-analyzed in a total sample of 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder, major depressive disorder (MDD), and schizophrenia were calculated to test for overlap in risk between psychiatric disorders and seasonality. RESULTS: The most significant association was with rs11825064 (P = 1.7 × 10⁻⁶, β = 0.64, standard error = 0.13), an intergenic single nucleotide polymorphism (SNP) found on chromosome 11. The evidence for overlap in risk factors was strongest for schizophrenia and seasonality, with the schizophrenia genetic profile scores explaining 3% of the variance in log-transformed global seasonality scores. Bipolar disorder genetic profile scores were also associated with seasonality, although at much weaker levels (minimum P value = 3.4 × 10⁻³), and no evidence for overlap in risk was detected between MDD and seasonality. CONCLUSIONS: Common SNPs of large effect most likely do not exist for seasonality in the populations examined. As expected, there were overlapping genetic risk factors for bipolar disorder (but not MDD) with seasonality. Unexpectedly, the risk for schizophrenia and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and schizophrenia

    Genetic variants in RBFOX3 are associated with sleep latency

    No full text
    Item does not contain fulltextTime to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 x 10-08, 6.59 x 10-08 and 9.17 x 10-08). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 x 10-02, 7.0 x 10-03 and 2.5 x 10-03; combined meta-analysis P-values=5.5 x 10-07, 5.4 × 10-07 and 1.0 x 10-07). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 x 10-316) and the central nervous system (P-value=7.5 x 10-321). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values<2.9 x 10-11) that are crucial in triggering the onset of sleep. To conclude, in this first large-scale GWAS of sleep latency we report a novel association of variants in RBFOX3 gene. Further, a functional prediction of RBFOX3 supports the involvement of RBFOX3 with sleep latency.8 p

    Novel loci associated with usual sleep duration: The CHARGE Consortium Genome-Wide Association Study

    No full text
    Contains fulltext : 160002.pdf (publisher's version ) (Closed access)Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47[thinsp]180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 [times] 10-9). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 [times] 10-4). The strongest combined association was at rs1823125 (P=1.5 [times] 10-10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1[thinsp]min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.8 p

    Genetic variants in RBFOX3 are associated with sleep latency

    No full text
    Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10-08, 6.59 × 10- 08 and 9.17 × 10- 08). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10- 02, 7.0 × 10- 03 and 2.5 × 10- 03; combined meta-analysis P-values=5.5 × 10-07, 5.4 × 10-07 and 1.0 × 10-07). A functional prediction of RBFOX3 base
    corecore