2,497 research outputs found

    Density matrix renormalisation group for a quantum spin chain at non-zero temperature

    Full text link
    We apply a recent adaptation of White's density matrix renormalisation group (DMRG) method to a simple quantum spin model, the dimerised XYXY chain, in order to assess the applicabilty of the DMRG to quantum systems at non-zero temperature. We find that very reasonable results can be obtained for the thermodynamic functions down to low temperatures using a very small basis set. Low temperature results are found to be most accurate in the case when there is a substantial energy gap.Comment: 6 pages, Standard Latex File + 7 PostScript figures available on reques

    Density matrix renormalisation group study of the correlation function of the bilinear-biquadratic spin-1 chain

    Full text link
    Using the recently developed density matrix renormalization group approach, we study the correlation function of the spin-1 chain with quadratic and biquadratic interactions. This allows us to define and calculate the periodicity of the ground state which differs markedly from that in the classical analogue. Combining our results with other studies, we predict three phases in the region where the quadratic and biquadratic terms are both positive.Comment: 13 pages, Standard Latex File + 5 PostScript figures in separate (New version with SUBSTANTIAL REVISIONS to appear in J Phys A

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Anomalous transverse acoustic phonon broadening in the relaxor ferroelectric Pb(Mg_1/3Nb_2/3)O_3

    Full text link
    The intrinsic linewidth ΓTA\Gamma_{TA} of the transverse acoustic (TA) phonon observed in the relaxor ferroelectric compound Pb(Mg1/3_{1/3}Nb2/3)0.8_{2/3})_{0.8}Ti0.2_{0.2}O3_3 (PMN-20%PT) begins to broaden with decreasing temperature around 650 K, nearly 300 K above the ferroelectric transition temperature TcT_c (∼360\sim 360 K). We speculate that this anomalous behavior is directly related to the condensation of polarized, nanometer-sized, regions at the Burns temperature TdT_d. We also observe the ``waterfall'' anomaly previously seen in pure PMN, in which the transverse optic (TO) branch appears to drop precipitously into the TA branch at a finite momentum transfer qwf∼0.15q_{wf} \sim 0.15 \AA−1^{-1}. The waterfall feature is seen even at temperatures above TdT_d. This latter result suggests that the PNR exist as dynamic entities above TdT_d.Comment: 6 pages, 4 figure

    Elastic anomaly of heavy fermion systems in a crystalline field

    Full text link
    An elastic anomaly, observed in the heavy fermi liquid state of Ce alloys (for example, CeCu6_6 and CeTe), is analyzed by using the infinite-UU Anderson lattice model. The four atomic energy levels are assumed for f-electrons. Two of them are mutually degenerate. A small crystalline splitting 2Δ2\Delta is assumed between two energy levels. The fourfold degenerate conduction bands are also considered in the model. We solve the model using the mean field approximation to slave bosons, changing the Fermi energy in order to keep the total electron number constant. The nonzero value of the mean field of the slave bosons persists over the temperatures much higher than the Kondo temperature. This is the effect of the constant electron number. Next, the linear susceptibility with respect to Δ\Delta is calculated in order to obtain the renomalized elastic constant. The resulting temperature dependence of the constant shows the downward dip. We point out the relation of our finding with the experimental data.Comment: submitted to J. Phys.: Condens. Matter, please request figure copies to [email protected]

    Interface driven magnetoelectric effects in granular CrO2

    Full text link
    Antiferromagnetic and magnetoelectric Cr2O3-surfaces strongly affect the electronic properties in half metallic CrO2. We show the presence of a Cr2O3 surface layer on CrO3 grains by high-resolution transmission electron microscopy. The effect of these surface layers is demonstrated by measurements of the temperature variation of the magnetoelectric susceptibility. A major observation is a sign change at about 100 K followed by a monotonic rise as a function of temperature. These electric field induced moments in CrO3 are correlated with the magnetoelectric susceptibility of pure Cr2O3. This study indicates that it is important to take into account the magnetoelectric character of thin surface layers of Cr2O3 in granular CrO2 for better understanding the transport mechanism in this system. The observation of a finite magnetoelectric susceptibility near room temperature may find utility in device applications.Comment: Figure 1 with strongly reduced resolutio

    Vibrations of the cubane molecule: inelastic neutron scattering study and theory

    Get PDF
    Cataloged from PDF version of article.Cubane (C8H8) is an immensely strained molecule whose C-C-C bond angle is 90 degrees rather than 109.5 degrees as expected for sp(3) bonding of carbon. We have measured the intramolecular vibrational spectrum of cubane using inelastic neutron scattering. The neutron data are used to test the transferability of various phenomenological potentials and tight-binding models to this highly strained molecule. Unlike these models, first-principles calculations of the INS spectrum (both energy and intensity) agree well with the experimental data. (C) 1999 Published by Elsevier Science B.V. All rights reserved
    • …
    corecore