3,846 research outputs found

    Book Review: The remedy: Queer and trans voices on health and health care

    Get PDF
    The remedy: Queer and trans voices on health and health care, by Z. Sharman. Vancouver, BC: Arsenal Pulp Press 2016. 256 pp. $18.95

    Soft Mode Dynamics Above and Below the Burns Temperature in the Relaxor Pb(Mg_1/3Nb_2/3)O_3

    Full text link
    We report neutron inelastic scattering measurements of the lowest-energy transverse optic (TO) phonon branch in the relaxor Pb(Mg_1/3Nb_2/3)O_3 from 400 to 1100 K. Far above the Burns temperature T_d ~ 620 K we observe well-defined propagating TO modes at all wave vectors q, and a zone center TO mode that softens in a manner consistent with that of a ferroelectric soft mode. Below T_d the zone center TO mode is overdamped. This damping extends up to, but not above, the waterfall wave vector q_wf, which is a measure of the average size of the PNR.Comment: 4 pages, 4 figures; modified discussion of Fig. 3, shortened captions, added reference, corrected typos, accepted by Phys. Rev. Let

    Single-Quadrature Continuous-Variable Quantum Key Distribution

    Get PDF
    Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two independent modulators for their implementations. Here, we propose and experimentally test a largely simplified scheme in which the Gaussian modulation is performed in a single quadrature. The scheme is shown to be asymptotically secure against collective attacks, and considers asymmetric preparation and excess noise. A single-quadrature modulation approach renders the need for a costly amplitude modulator unnecessary, and thus facilitates commercialization of continuous-variable quantum key distribution.Comment: 13 pages, 7 figure

    Continuous Variable Quantum Key Distribution with a Noisy Laser

    Get PDF
    Existing experimental implementations of continuous-variable quantum key distribution require shot-noise limited operation, achieved with shot-noise limited lasers. However, loosening this requirement on the laser source would allow for cheaper, potentially integrated systems. Here, we implement a theoretically proposed prepare-and-measure continuous-variable protocol and experimentally demonstrate the robustness of it against preparation noise stemming for instance from technical laser noise. Provided that direct reconciliation techniques are used in the post-processing we show that for small distances large amounts of preparation noise can be tolerated in contrast to reverse reconciliation where the key rate quickly drops to zero. Our experiment thereby demonstrates that quantum key distribution with non-shot-noise limited laser diodes might be feasible.Comment: 10 pages, 6 figures. Corrected plots for reverse reconciliatio

    Soft Mode Anomalies in the Perovskite Relaxor Pb(Mg1/3Nb2/3)O3

    Full text link
    Neutron inelastic scattering measurements of the polar TO phonon mode in the cubic relaxor Pb(Mg1/3Nb2/3)O3, at room temperature, reveal anomalous behavior similar to that recently observed in the Pb(Zn1/3Nb2/3)_{0.92}Ti_{0.08}O3 system in which the optic branch appears to drop precipitously into the acoustic branch at a finite value of the momentum transfer q = 0.20 1/Angstroms, measured from the zone center. By contrast, a recent neutron study showed that PMN exhibits a normal TO phonon dispersion at 800 K. We speculate this behavior is common to all relaxor materials and is the result of the presence of nanometer-scale polarized domains in the crystal that form below a temperature Td, which effectively prevent the propagation of long wavelength (q = 0) phonons.Comment: 5 pages, 4 figures To appear as an AIP Conference Proceedings Volume for the Aspen 2000 Winter Conference on the Fundamental Physics of Ferroelectric

    Neutron Diffuse Scattering from Polar Nanoregions in the Relaxor Pb(Mg1/3Nb2/3)O3

    Full text link
    We have studied the neutron diffuse scattering in the relaxor PMN. The diffuse scattering appears around the Burns temperature (~620K), indicating its origin from the polar nanoregions (PNR). While the relative diffuse intensities are consistent with previous reports, they are entirely different from those of the lowest-energy TO phonon. Because of that, it has been considered that this TO mode could not be the ferroelectric soft mode. Recently, a neutron scattering study has unambiguously shown that the TO mode does soften on cooling. If the diffuse scattering in PMN originates from the soft mode condensation, then the atomic displacements must satisfy the center of mass condition. But, the atomic displacements determined from diffuse scattering intensities do not fulfill this condition. To resolve this contradiction, we propose a simple model in which the total atomic displacement consists of two components: δCM\delta_{CM} is created by the soft mode condensation, satisfying the center of mass condition, and, δshift\delta_{shift} represents a uniform displacement of the PNR along their polar direction relative to the surrounding (unpolarized) cubic matrix. Within this framework, we can successfully describe the neutron diffuse scattering intensities observed in PMN.Comment: 7 pages, 7 figures (Revised: 11-16-2001

    Ferroelectric Dynamics in the Perovskite Relaxor PMN

    Get PDF
    We review results obtained from recent neutron scattering studies of the lead-oxide class of perovskite relaxors PMN and PZN. A ferroelectric soft mode has been identified in PMN at 1100 K that becomes overdamped near 620 K. This is the same temperature at which polar nanoregions (PNR) begin to form, denoted by Td, and suggests that a direct connection exists between the soft mode and the PNR. The appearance of diffuse scattering intensity at Td reported by Naberezhnov et al. lends further support to this picture. At lower temperature the soft mode in PMN reappears close to Tc = 213 K (defined only for E > Ec). These results are provocative because the dynamics below Tc are characteristic of an ordered ferroelectric state, yet they occur in a system that remains cubic on average at all temperatures. We discuss a coupled-mode model that successfully describes these data as well as those from earlier lattice dynamical studies of other perovskites such as BaTiO3.Comment: 10 pages, 7 figures, Conference - Fundamental Physics of Ferroelectrics 200

    Super sensitivity and super resolution with quantum teleportation

    Get PDF
    We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.Comment: 5 pagers, 3 figure

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review
    • …
    corecore