49 research outputs found

    Distribution of testate amoebae in salt marshes along the North American East Coast

    Get PDF
    Reproduced with permission of the publisher. © 2006 Cushman Foundation for Foraminiferal ResearchThis study describes the distribution of testate amoebae in three North American East Coast salt marshes (Leipsic River marsh, Delaware, USA; Little River marsh, Maine, USA; and Little Dipper Harbour marsh, New Brunswick, Canada). Five zones are recognized in the high salt marsh. With increasing marine influence, these zones are characterized by the following succession of dominant taxa: Valkanovia elegans, Tracheleuglypha dentata, Centropyxis cassis type, C. platystoma type and Difflugia pristis type. Most species occur in all three marshes, and their general vertical distribution is comparable. The results are also comparable with those obtained from British salt marshes, suggesting that salt-marsh testate amoebae have similar distributions on both sides of the Atlantic Ocean. The precision of the sea-level indicative value of testate amoebae in fossil salt-marsh sediments is a function of the local mean tidal range (MTR). Results of this study show that testate amoebae can indicate former sea levels with a precision of ±0.04 m in the Leipsic River marsh (MTR = 1.75 m), ±0.09 m in the Little River marsh (MTR = 2.6 m), and ±0.18 m in the Little Dipper marsh (MTR = 5.8 m)

    Salt-marsh testate amoebae as precise and widespread indicators of sea-level change

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Salt-marsh sediments are routinely used to reconstruct sea-level changes over past millennia. These reconstructions bridge an important gap between geological and instrumental sea-level records, and provide insights into the role of atmospheric, oceanic, climatic and anthropogenic sea-level drivers, thereby improving understanding of contemporary and future sea-level changes. Salt-marsh foraminifera, diatoms and testate amoebae are three of the proxies capable of accurately reconstructing former sea level over decadal to millennial timescales. Datasets of surface assemblages are collated along elevational gradients to provide modern analogues that can be used to infer former marsh-surface elevations from fossil assemblages. Testate amoebae are the most recently developed proxy and existing studies suggest that they are at least as precise as the two other proxies. This study provides a synthesis of sea-level research using testate amoebae and collates and analyses existing surface datasets of intertidal salt-marsh testate amoebae from sites throughout the North Atlantic. We test the hypothesis that intertidal testate amoebae demonstrate cosmopolitan intertidal zonation across wide geographical areas in a way that is unique to this proxy. Testate amoebae assemblages are harmonised under a unified taxonomy and standardised into a single basin-wide training set suitable for reconstructing sea-level changes from salt-marsh sediments across the North Atlantic. Transfer functions are developed using regression modelling and show comparable performance values to published local training sets of foraminifera, diatoms and testate amoebae. When used to develop recent (last 100 years) sea-level reconstructions for sites in Norway and Quebec, Canada, the testate amoebae-based transfer function demonstrated prediction uncertainties of ± 0.26 m and ± 0.10 m respectively. These uncertainties equate to 10% and 11% of the tidal ranges at each site, which is of comparable precision to other published sea-level reconstructions based on foraminifera or diatoms. There is great scope for further developing intertidal testate amoebae as precise sea-level indicators and their application should be tested at sites beyond the North Atlantic.Our work on salt-marsh testate amoebae was funded by the Natural Environment Research Council (grant GR9/03426 to WRG and DJC) and by Plymouth University studentships (to RLB and TLN). Datasets from the Magdalen Islands were originally collected using funding from the Coastal Geoscience Research Chair at the Université du Québec à Rimouski

    Drivers of 20th Century Sea-Level Change in Southern New Zealand Determined from Proxy and Instrumental Records

    Get PDF
    In this paper we present new proxy-based sea-level reconstructions for southern New Zealand spanning the last millennium. These palaeo sea-level records usefully complement sparse Southern Hemisphere proxy and tide-gauge sea-level datasets and, in combination with instrumental observations, can test hypotheses about the drivers of 20th century global sea-level change, including land-based ice melt and regional sterodynamics. We develop sea-level transfer functions from regional datasets of salt-marsh foraminifera to establish a new proxy-based sea-level record at Mokomoko Inlet, at the southern tip of the South Island, and to improve the previously published sea-level reconstruction at Pounawea, located about 110 km to the east. Chronologies are based on radiocarbon, radiocaesium, stable lead isotope and pollen analyses. Both records are in good agreement and show a rapid sea-level rise in the first half of the 20th century that peaked in the 1940s. Previously reported discrepancies between proxy-based sea-level records and tide-gauge records are partially reconciled by accounting for barystatic and sterodynamic components of regional sea-level rise. We conclude that the rapid sea-level rise during the mid-20th century along the coast of southern New Zealand was primarily driven by regional thermal expansion and ocean dynamics

    The Economic Value of Climate Information in Adaptation Decisions : Learning in the Sea-level Rise and Coastal Infrastructure Context

    Get PDF
    Traditional methods of investment appraisal have been criticized in the context of climate change adaptation. Economic assessment of adaptation options needs to explicitly incorporate the uncertainty of future climate conditions and should recognise that uncertainties may diminish over time as a result of improved understanding and learning. Real options analysis (ROA) is an appraisal tool developed to incorporate concepts of flexibility and learning that relies on probabilistic data to characterise uncertainties. It is also a relatively resource-intensive decision support tool. We test whether, and to what extent, learning can result from the use of successive generations of real life climate scenarios, and how non-probabilistic uncertainties can be handled through adapting the principles of ROA in coastal economic adaptation decisions. Using a relatively simple form of ROA on a vulnerable piece of coastal rail infrastructure in the United Kingdom, and two successive UK climate assessments, we estimate the values associated with utilising up-dated information on sea-level rise. The value of learning can be compared to the capital cost of adaptation investment, and may be used to illustrate the potential scale of the value of learning in coastal protection, and other adaptation contexts

    Can sand dunes be used to study historic storm events?

    Get PDF
    Knowing the long-term frequency of high magnitude storm events that cause coastal inundation is critical for present coastal management, especially in the context of rising sea levels and potentially increasing frequency and severity of storm events. Coastal sand dunes may provide a sedimentary archive of past storm events from which long-term frequencies of large storms can be reconstructed. This study uses novel portable optically stimulated luminescence (POSL) profiles from coastal dunes to reconstruct the sedimentary archive of storm and surge activity for Norfolk, UK. Application of POSL profiling with supporting luminescence ages and particle size analysis to coastal dunes provides not only information of dunefield evolution but also on past coastal storms. In this study, seven storm events, two major, were identified from the dune archive spanning the last 140 years. These appear to correspond to historical reports of major storm surges. Dunes appear to be only recording (at least at the sampling resolution used here) the highest storm levels that were associated with significant flooding. As such the approach seems to hold promise to obtain a better understanding of the frequency of large storms by extending the dune archive records further back to times when documentation of storm surges was sparse

    Reconstruction of recent sea-level change using testate amoebae

    Get PDF
    Reproduced with permission of the publisher. Copyright © 2009 University of Washington Published by Elsevier Inc.Proxy-based sea-level reconstructions place the instrumentally observed rates of recent sea-level rise in a longer term context by providing data that extend the instrumental sea-level record into past centuries. This paper presents the first sea-level reconstructions based on analyses of testate amoebae, to test their ability to produce high-precision reconstructions of past sea level. We present two reconstructions for the past 100 yr from sites in Maine (USA) and Nova Scotia (Canada) based on short cores from salt marshes, and modern training data from North America and the United Kingdom. These are compared with tide-gauge records and reconstructions based on foraminifera from the same cores. The reconstructions show good agreement with both the tide-gauge data and the foraminifera-based reconstructions. The UK data perform well in predicting known elevations of North American surface samples and produce sea-level reconstructions very similar to those based on the North American data, suggesting the methodology is robust across large geographical areas. We conclude that testate amoebae have the potential to provide robust, higher precision sea-level reconstructions for the past few centuries if modern transfer functions are improved and core sites are located within the main zone of testate amoebae occurrence on the salt marsh

    Drivers of 20th century sea-level change in southern New Zealand determined from proxy and instrumental records

    Get PDF
    In this paper we present new proxy-based sea-level reconstructions for southern New Zealand spanning the last millennium. These palaeo sea-level records usefully complement sparse Southern Hemisphere proxy and tide-gauge sea-level datasets and, in combination with instrumental observations, can test hypotheses about the drivers of 20th century global sea-level change, including land-based ice melt and regional sterodynamics. We develop sea-level transfer functions from regional datasets of salt-marsh foraminifera to establish a new proxy-based sea-level record at Mokomoko Inlet, at the southern tip of the South Island, and to improve the previously published sea-level reconstruction at Pounawea, located about 110 km to the east. Chronologies are based on radiocarbon, radiocaesium, stable lead isotope and pollen analyses. Both records are in good agreement and show a rapid sea-level rise in the first half of the 20th century that peaked in the 1940s. Previously reported discrepancies between proxy-based sea-level records and tide-gauge records are partially reconciled by accounting for barystatic and sterodynamic components of regional sea-level rise. We conclude that the rapid sea-level rise during the mid-20th century along the coast of southern New Zealand was primarily driven by regional thermal expansion and ocean dynamics

    Reconstructing sea-level change in the Falkland Islands (Islas Malvinas) using salt-marsh foraminifera, diatoms and testate amoebae

    Get PDF
    Proxy records of past sea-level change provide a means of extending sea-level histories from tide gauges into the pre-industrial period. This is especially valuable in the South Atlantic region where sea-level data are limited to only a few tide-gauge records. Multi-proxy approaches to sea-level reconstruction are relatively rare but have distinct benefits when groups of micro-organisms are sparse or under-represented in modern or fossil sediments. Here, we address this challenge by utilising surface foraminifera, testate amoebae and diatoms from a salt marsh at Swan Inlet, East Falkland. All three micro-organism groups occupied distinct vertical niches in the contemporary salt-marsh. We investigated the relative performance of each group of micro-organisms in providing a sea-level reconstruction using individual (group-specific) regression models and with a multi-proxy regression model that combined all three groups. Foraminifera alone were not a suitable proxy. Surveyed sample elevations were closely matched by estimated elevations using Weighted-Average (WA) and Weighted-Average Partial-Least-Squares (WA- PLS) regressions. Relative sea-level reconstructions were derived by applying each model to microfossil assemblages recovered from a core (SI-2) from the same site. The combined transfer function yielded reconstructive precision (± 0.08 m) comparable to our best single-proxy transfer function (± 0.06 m) but only 18% of palaeo-samples were identified as having “close” or “good” analogues in the combined training data set. We highlight the benefit of a pragmatic approach to sea-level reconstructions whereby additional proxies should be employed if the use of only one proxy performs poorly across the width of the elevation gradient

    Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core From Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic

    Get PDF
    Building on an earlier study that confirmed the stability of the 405‐kyr eccentricity climate cycle and the timing of the Newark‐Hartford astrochronostratigraphic polarity time scale back to 215 Ma, we extend the magnetochronology of the Late Triassic Chinle Formation to its basal unconformity in scientific drill core PFNP‐1A from Petrified Forest National Park (Arizona, USA). The 335‐m‐thick Chinle section is imprinted with paleomagnetic polarity zones PF1r to PF10n, which we correlate to chrons E17r to E9n (~209 to 224 Ma) of the Newark‐Hartford astrochronostratigraphic polarity time scale. A sediment accumulation rate of ~34 m/Myr can be extended down to ~270 m, close to the base of the Sonsela Member and the base of magnetozone PF5n, which we correlate to chron E14n that onsets at 216.16 Ma. Magnetozones PF5r to PF10n in the underlying 65‐m‐thick section of the mudstone‐dominated Blue Mesa and Mesa Redondo members plausibly correlate to chrons E13r to E9n, indicating a sediment accumulation rate of only ~10 m/Myr. Published high‐precision U‐Pb detrital zircon dates from the lower Chinle tend to be several million years older than the magnetochronological age model. The source of this discrepancy is unclear but may be due to sporadic introduction of juvenile zircons that get recycled. The new magnetochronological constraint on the base of the Sonsela Member brings the apparent timing of the included Adamanian‐ Revueltian land vertebrate faunal zone boundary and the Zone II to Zone III palynofloral transition closer to the temporal range of the ~215 Ma Manicouagan impact structure in Canada
    corecore