8 research outputs found

    Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite

    Get PDF
    Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics

    Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean

    Get PDF
    The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd

    Contrasting latitudinal gradients of body size in helminth parasites and their hosts

    No full text
    © 2019 John Wiley & Sons Ltd Aim: We examined body size scaling relationships for two developmental life stages of parasitic helminths (egg and adult) separately in relationship to latitude (i.e. Bergmann\u27s rule), temperature and temperature seasonality. Given that helminth eggs experience environmental conditions more directly, whereas adults live inside infected host individuals, we predict stronger environmentally driven gradients of body size for eggs than for adults. Location: Global. Time period: Present day. Major taxa studied: Parasitic helminths. Methods: We compiled egg size and adult body size data (both minimum and maximum) for 265 parasitic helminth species from the literature, along with species latitudinal distribution information using an extensive global helminth occurrence database. We then examined how the average helminth egg and adult body size of all helminth species present (minimum and maximum separately) scaled with latitude, temperature and temperature variability, using generalized linear models. Results: Both the egg size and the adult body size of helminths tended to decrease towards higher latitudes, although we found the opposite body size scaling pattern for their host species. Helminth sizes were also positively correlated with temperature and negatively, but more weakly, with temperature seasonality. Main conclusions: Instead of following the body size patterns of their hosts, helminth parasites are more similar to other ectotherms in that they follow the converse Bergmann\u27s rule. This pattern did not differ between helminth developmental stages, suggesting that mean annual temperature and seasonality are unlikely to be related mechanistically to body size variation in this case

    Contrasting latitudinal gradients of body size in helminth parasites and their hosts

    No full text
    © 2019 John Wiley & Sons Ltd Aim: We examined body size scaling relationships for two developmental life stages of parasitic helminths (egg and adult) separately in relationship to latitude (i.e. Bergmann\u27s rule), temperature and temperature seasonality. Given that helminth eggs experience environmental conditions more directly, whereas adults live inside infected host individuals, we predict stronger environmentally driven gradients of body size for eggs than for adults. Location: Global. Time period: Present day. Major taxa studied: Parasitic helminths. Methods: We compiled egg size and adult body size data (both minimum and maximum) for 265 parasitic helminth species from the literature, along with species latitudinal distribution information using an extensive global helminth occurrence database. We then examined how the average helminth egg and adult body size of all helminth species present (minimum and maximum separately) scaled with latitude, temperature and temperature variability, using generalized linear models. Results: Both the egg size and the adult body size of helminths tended to decrease towards higher latitudes, although we found the opposite body size scaling pattern for their host species. Helminth sizes were also positively correlated with temperature and negatively, but more weakly, with temperature seasonality. Main conclusions: Instead of following the body size patterns of their hosts, helminth parasites are more similar to other ectotherms in that they follow the converse Bergmann\u27s rule. This pattern did not differ between helminth developmental stages, suggesting that mean annual temperature and seasonality are unlikely to be related mechanistically to body size variation in this case

    Forecasting parasite sharing under climate change

    No full text
    Species are shifting their distributions in response to climate change. This geographic reshuffling may result in novel co-occurrences among species, which could lead to unseen biotic interactions, including the exchange of parasites between previously isolated hosts. Identifying potential new host–parasite interactions would improve forecasting of disease emergence and inform proactive disease surveillance. However, accurate predictions of future cross-species disease transmission have been hampered by the lack of a generalized approach and data availability. Here, we propose a framework to predict novel host–parasite interactions based on a combination of niche modelling of future host distributions and parasite sharing models. Using the North American ungulates as a proof of concept, we show this approach has high cross-validation accuracy in over 85% of modelled parasites and find that more than 34% of the host–parasite associations forecasted by our models have already been recorded in the literature. We discuss potential sources of uncertainty and bias that may affect our results and similar forecasting approaches, and propose pathways to generate increasingly accurate predictions. Our results indicate that forecasting parasite sharing in response to shifts in host geographic distributions allow for the identification of regions and taxa most susceptible to emergent pathogens under climate change. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’
    corecore