46 research outputs found
Heizelementschweißen von Bauteilen großer Wanddicke
Das Heizelementschweißen von Bauteilen großer Wanddicke wurde bisher wissenschaftlich kaum untersucht. In der DVS-Richtlinie wurden die Parameter für große Wanddicken linear extrapoliert. Die Veröffentlichung beschäftigt sich mit der systematischen Analyse des Heizelementschweißens von Wanddicken bis 100 mm. Weiterhin werden Prozessstrategien diskutiert, die zur Verbesserung der Langzeitfestigkeit von heizelementgeschweißten Bauteilen großer Wanddicke beitragen sollen
Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder
The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady-state conditions, we used an own developed testing equipment based on gravimetric determination of mass loss of rubber test specimen to investigate the influence of rubber powder content on dynamic wear depending on varying impact energy levels. Incorporation of SBR rubber powder in SBR rubber compounds increases wear. With increasing rubber powder content the wear at steady-state conditions progressively increases. However, the level of wear at dynamic loading conditions increases only once, but stays constant subsequently even with contents of incorporated rubber powder
Entwicklung und Herstellung von kombinierten WPC-Trag- und Gleitelementen für die Fördertechnik
Die Forschungs- und Entwicklungsarbeiten resultieren aus dem Ansatz, die theoretisch ableit-baren erheblichen Vorteile der Werkstoffgruppe WPC zur Herstellung von kombinierten WPC-Trag- und Gleitelementen für fördertechnische Anwendungen industrieller Verkettungssysteme (Stückgutförderer) zu nutzen. Es wurde davon ausgegangen, dass sich die typischen Ver-schleißursachen hochbelasteter polymerer Gleitelemente:
- Abrasivverschleiß
- mechanische Überlast und Deformation in den Kontaktstellen
- thermisch bedingter Verschleiß
durch geeigneten Holzzusatz und –anteil zu höheren Grenzen hin verschieben lassen, indem der anfängliche Abrasivverschleiß der polymeren Komponente als Schmiermittel den Abrieb bzw. den Verschleiß und die Reibungszahl der stärker tragenden Holzkomponente verringert. Zudem sollen durch diese Werkstoffmischung die negativen Folgen steigender Temperaturent-wicklung auf die Reibpaarung gesenkt werden.
Für die Optimierung der WPC-Werkstoffe zum Einsatz in maschinenbautechnischen Anwen-dungen wurden Rezepturen entwickelt, die neben dem verbesserten tribologischen Verhalten gleichfalls durch erhöhte mechanische Festigkeiten aufgrund gezielter Haftvermittlerzugabe gekennzeichnet sind. Einflußgrößen aus Rezeptur und Verarbeitung wurden untersucht, Grundlagenversuche zur Schweißbarkeit durchgeführt. Dabei zeigt sich eine geringere Abhän-gigkeit von Prozeßgrößen, wie Temperaturen oder Drücke in der Fügezone.
Die durchgeführten tribologischen Untersuchungen zur Verifikation der Annahme zeigen, daß bei der Verwendung von WPC in hoch belasteten Reibpaarungen ein verbesserter Gleitreibwert bei geringerem Verschleiß im Gegensatz zum reinen Kunststoff vorliegt und somit der Ansatz der Projektzielstellung bestätigt wurde. Für die Übertragung der Erkenntnisse in der Praxis wurde abschließend zusammen mit einem Industriepartner ein vorteilhaftes Profilsystem für einen Stückgutförderer konzipiert und in einer ersten Testanlage geprüft
Warmgasstumpfschweißen - Einfluss des Werkzeugdesigns und des verwendeten Prozessgases auf das Erwärm- und Schweißverhalten
Der vorliegende Beitrag zeigt Untersuchungsergebnisse eines in Kooperation zwischen der TU Chemnitz und der Universität Paderborn durchgeführten AiF-IGF Vorhabens zum Warmgasstumpfschweißen. Die inhaltlichen Schwerpunkte lagen einerseits auf Analysen zum Einfluss des Werkzeugdesigns auf das Erwärm- und Schweißverhalten sowie andererseits auf Untersuchungen zum Einfluss des Prozessgases (Luft vs. Stickstoff) und den im Vergleich erreichbaren Nahteigenschaften. Im Rahmen des Projektes konnte gezeigt werden, dass insbesondere die verwendete Düsengeometrie einen signifikanten Einfluss auf das Erwärmverhalten ausübt und sich dieses direkt in den Schweißnahteigenschaften widerspiegelt. Bei der richtigen Auswahl und Einstellung des Schweiß-Setups können sowohl mit Luft als auch mit Stickstoff hohe und vergleichbare Schweißnahteigenschaften erreicht werden
Welding of incompatible thermoplastic polymers
Due to the wide range of properties of plastics (e.g. low density), more and more conventional materials are substituted by polymer materials. Complex requirement profiles on technical parts increase the demand for joining processes that enable the reliable joining of otherwise incompatible thermoplastics. In this case, material bonded connections are approaching their limits. In the following study two incompatible thermoplastic polymers were welded by using polymer blends that are compatible to both components. Industrially relevant thermoplastics polyethylene (PE) and polyamide 12 (PA12) were chosen to demonstrate the potential of an innovative joining technology
The 3-Phase Structure of Polyesters (PBT, PET) after Isothermal and Non-Isothermal Crystallization
According to the 3-phase model, semi-crystalline thermoplastics consist of a mobile amorphous fraction (MAF), a rigid amorphous fraction (RAF), and a crystalline fraction (CF). For the two polyesters Polybutylene Terephthalate (PBT) and Polyethylene Terephthalate (PET), the composition of these phases was investigated using the largest possible variation in the isothermal and non-isothermal boundary conditions. This was performed by combining the conventional Differential Scanning Calorimetry (DSC) with the Fast Scanning Calorimetry (FSC). From the results it can be deduced that the structural composition of both polymers is characterised by a large fraction of the rigid amorphous phase. This is mainly formed either during the primary crystallization in the low temperature range or during the subsequent secondary crystallization that follows primary crystallization in the high temperature range. Depending on the thermal history, the fraction of the mobile amorphous phase of both polymers approaches a minimum, which does not appear to be undercut
Kalorimetrische Untersuchung des Kristallisationsverhaltens unter dynamischer Abkühlung
Eine kalorimetrische Kristallisationsuntersuchung unter dynamischer Abkühlung ist bisher noch nicht erfolgt, auch weil die klassischen DSC-Messsysteme hierfür thermisch zu träge sind und die Einschwingzeiten zu lang sind. Durch die Weiterentwicklung der Prüftechnik, insbesondere auf dem Gebiet der Hochgeschwindigkeitskalorimetrie, erscheint es jedoch erstmals möglich, das dynamische Abkühlverhalten prozessnah nachbilden zu können und die Auswirkung auf die Kristallisation zu untersuchen.
Im Rahmen dieser Arbeit wurde daher versucht die dynamische Abkühlung einer Kunststoffschmelze aus PBT kalorimetrisch in Abhängigkeit der Werkzeugtemperatur und der Bauteilgeometrie nachzubilden, jeweils bei Betrachtung verschiedener Bauteiltiefen. Hierfür wurden numerisch nichtlineare Kühlratenverläufe bestimmt, die im Anschluss durch Segmentierung linearisiert und somit in ein FSC-Programm überführt werden konnten. Anhand der resultierenden Wärmestromverläufe konnte gezeigt werden, dass eine Interpretation der kalorimetrischen Erfassung unter dynamischer Abkühlung möglich ist und der Verlauf der Kristallisation in verschiedenen Bauteiltiefen in Abhängigkeit der weiteren Randbedingungen nachvollzogen werden kann.A calorimetric investigation of the crystallization of thermoplastics under dynamic cooling has not performed yet, also because the classical DSC measuring systems are thermally too slow for this purpose and the corresponding settling times are too long. However, as a result of the further development of testing technology, especially in the field of high-speed calorimetry, it seems possible to simulate the dynamic cooling behavior of real processing and to investigate its effects on crystallization.
In this work the dynamic cooling of a polymer melt was simulated calorimetrically depending on the tool temperature and the part geometry, in each case considering the different cooling behavior of different part depths. Therefore, numerically nonlinear cooling rate profiles were determined, which could then be linearized by segmentation and thus converted into a calorimetric program. On the basis of the resulting heat flow characteristics it could be shown that an interpretation of the calorimetric detection under dynamic cooling is possible and the course of the crystallization in different part depths can be reconstructed in dependence on the further boundary conditions
Überlappendes Infrarotschweißen von Organoblechen zur Herstellung von Hohlkörperbauteilen – Verbindungseigenschaften und mögliche Verfahrensvarianten
Endlosfaserverstärkte Thermoplaste werden oftmals als imprägnierte und konsolidierte Halbzeuge angeboten. Solche thermoplastischen Prepregs werden üblicherweise als Organobleche bezeichnet. Die thermoplastische Matrix ermöglicht unter anderem die Warmformbarkeit und Schweißbarkeit von Organoblechen.
Organobleche sind, durch die ausschließliche Möglichkeit sie mittels Thermoformen umzuformen, in ihrer Formgebung auf halbschalige Strukturen beschränkt, welche begrenzte Torsions-, Verwindungs- und Beulsteifigkeiten aufweisen. Um die Steifigkeiten dieser schalenförmigen, offenen Bauteile zu erhöhen, können z. B. versteifende Rippen oder Verstärkungssegmente eingebracht werden. Aufgrund des Thermoformprozesses sind mit Organoblechen, verglichen mit duroplastischen Systemen, jedoch nur kleine und einfache Bauteilgeometrien realisierbar. Um neben der Steifigkeitserhöhung auch größere und komplexere Bauteile herzustellen, können die schalenförmigen Organobleche während des Umformvorgangs gefügt werden. Auf diese Weise werden Hohlkörper in Doppelhutprofilform gefertigt. So werden, auch ohne Einbringung von Rippen o. ä., hohe Bauteilsteifigkeiten erreicht. Die Doppelhutprofilform hat jedoch eine nicht optimale Nutzung der Faserverstärkung über die Fügeebene hinweg zur Folge, da die Fasern von der Belastungsrichtung abweichend umgelenkt werden.
Im vorliegenden Beitrag wird daher das überlappende Infrarotschweißen von Organoblechen behandelt, was eine Faserverstärkung über die Fügeebene hinweg ermöglicht. Die Prozess- und Werkstoffeinflüsse auf die Verbindungseigenschaften werden beschrieben und Möglichkeiten zur Optimierung der Schweißnahteigenschaften dargestellt. Des Weiteren werden Optimierungskriterien für überlappende Infrarotschweißungen an den untersuchten Organoblechen festgelegt. Die im Verlauf der Forschungsarbeiten umzusetzenden Verfahrensvarianten zur Herstellung von Hohlkörperbauteilen aus Organblechen werden zudem vorgestellt
Manufacturing Hollow Bodies made of Continuous Glassfiber-reinforced Thermoplastics by Infrared Welding
Thermoplastic prepregs that are also known as organo sheets are processed in presses and formed to half shells. Larger components can be produced by joining the half shells, which results in hollow bodies. However, current manufacturing technologies allow only cap profile shaped joints, which cause fiber deflections in the joint plane. This presentation shows that overlapping infrared welds in organo sheets enable weld strengths close to the interlaminar shear strengths of the unwelded materials and thus a fiber utilization across the joint plane. By using high welding pressures, a matrix depletion and a change of the fiber alignment in the weld plane may occur which causes low weld strengths. Therefore possibilbites to optimize the weld strengths are shown and one possible process variants for the manufacturing of hollow bodies by infrared welding is introduced
Manufacturing Hollow Bodies made of Continuous Glassfiber-reinforced Thermoplastics by Infrared Welding
Thermoplastic prepregs that are also known as organo sheets are processed in presses and formed to half shells. Larger components can be produced by joining the half shells, which results in hollow bodies. However, current manufacturing technologies allow only cap profile shaped joints, which cause fiber deflections in the joint plane. This presentation shows that overlapping infrared welds in organo sheets enable weld strengths close to the interlaminar shear strengths of the unwelded materials and thus a fiber utilization across the joint plane. By using high welding pressures, a matrix depletion and a change of the fiber alignment in the weld plane may occur which causes low weld strengths. Therefore possibilbites to optimize the weld strengths are shown and one possible process variants for the manufacturing of hollow bodies by infrared welding is introduced