21 research outputs found

    Impurity effect on entanglement in an XY two-dimensional spin lattice

    Get PDF
    AbstractWe consider a finite two dimensional XY spin model. The model consists of a set of seven localized spin- 12 particles in a two dimensional triangular lattice coupled through nearest neighbor exchange interaction in presence of an external magnetic field. We study the effect of a single impurity spin coupled to its nearest neighbor through an exchange interaction J′ on the pairwise entanglement between the different spins in the lattice. We found that when the spin is located at a border site the entanglement between the impurity and its nearest neighbors increases monotonically with J′ reaching a saturation value that depends on the magnetic field strength h. On the other hand the entanglement with the next nearest spins shows a critical behavior where the entanglement increases and then decreases rapidly until it vanishes. The critical coupling value at which the entanglement vanishes increases as h increases. Studying the entanglement between two spins excluding the impurity show that while the entanglement between two spins coupled to the impurity reach a saturation value as J′ increases, it vanishes for spins not coupled to the impurity. Furthermore studying the effect of a central impurity show that the entanglement between nearest neighbor and next nearest neighbor spins reaches an asymptotic value as J′ increases. Interestingly it was demonstrated that the impurity can be used as a switch to control the entanglement between different spins in the lattice turning it on and off

    Persistence of entanglement in thermal states of spin systems

    Full text link
    We study and compare the persistence of bipartite entanglement (BE) and multipartite entanglement (ME) in one-dimensional and two-dimensional spin XY models in an external transverse magnetic field under the effect of thermal excitations. We compare the threshold temperature at which the entanglement vanishes in both types of entanglement. We use the entanglement of formation as a measure of the BE and the geometric measure to evaluate the ME of the system. We have found that in both dimensions in the anisotropic and partially anisotropic spin systems at zero temperatures, all types of entanglement decay as the magnetic field increases but are sustained with very small magnitudes at high field values. Also we found that for the same systems, the threshold temperatures of the nearest neighbour (nn) BEs are higher than both of the next-to-nearest neighbour BEs and MEs and the three of them increase monotonically with the magnetic field strength. Thus, as the temperature increases, the ME and the far parts BE of the system become more fragile to thermal excitations compared to the nn BE. For the isotropic system, all types of entanglement and threshold temperatures vanish at the same exact small value of the magnetic field. We emphasise the major role played by both the properties of the ground state of the system and the energy gap in controlling the characteristics of the entanglement and threshold temperatures. In addition, we have shown how an inserted magnetic impurity can be used to preserve all types of entanglement and enhance their threshold temperatures. Furthermore, we found that the quantum effects in the spin systems can be maintained at high temperatures, as the different types of entanglements in the spin lattices are sustained at high temperatures by applying sufficiently high magnetic fields.Comment: 20 pages, 17 figure

    Entanglement dynamics of one-dimensional driven spin systems in time-varying magnetic fields

    Get PDF
    We study the dynamics of entanglement for a one-dimensional spin chain with a nearest neighbor time dependent Heisenberg coupling J(t) between the spins in presence of a time dependent external magnetic field h(t) at zero and finite temperatures. We consider different forms of time dependence for the coupling and magnetic field; exponential, hyperbolic and periodic. We examined the system size effect on the entanglement asymptotic value. It was found that for a small system size the entanglement starts to fluctuate within a short period of time after applying the time dependent coupling. The period of time increases as the system size increases and disappears completely as the size goes to infinity. We also found that when J(t) is periodic the entanglement shows a periodic behavior with the same period, which disappears upon applying periodic magnetic field with the same frequency. Solving the particular case where J(t) and h(t) are proportional exactly, we showed that the asymptotic value of entanglement depends only on the initial conditions regardless of the form of J(t) and h(t) applied at t > 0.Comment: 22 pages and 8 figure

    Entanglement in a Time-Dependent Coupled XY Spin Chain in an External Magnetic Field

    Full text link
    We consider an infinite one dimensional anisotropic XY spin chain with a nearest neighbor time-dependent Heisenberg coupling J(t) between the spins in presence of a time-dependent magnetic field h(t). We discuss a general solution for the system and present an exact solution for particular choice of J and h of practical interest. We investigate the dynamics of entanglement for different degrees of anisotropy of the system and at both zero and finite temperatures. We find that the time evolution of entanglement in the system show non-ergodic and critical behavior at zero and finite temperatures and different degrees of anisotropy. The asymptotic behavior of entanglement at the infinite time limit at zero temperature and constant J and h depends only the parameter lambda=J/h rather than the individual values of J and h for all degrees of anisotropy but changes for nonzero temperature. Furthermore, the asymptotic behavior is very sensitive to the initial values of J and h and for particular choices we may create finite asymptotic entanglement regardless of the final values of J and h. The persistence of quantum effects in the system as it evolves and as the temperature is raised is studied by monitoring the entanglement. We find that the quantum effects dominates within certain regions of the kT-lambda space that vary significantly depending on the degree of the anisotropy of the system. Particularly, the quantum effects in the Ising model case persists in the vicinity of both its critical phase transition point and zero temperature as it evolves in time. Moreover, the interplay between the different system parameters to tune and control the entanglement evolution is explored.Comment: 33 pages, 17 figures; v3: Grammar errors and typos corrected, Figure 17(b) update

    Nuclear-induced time evolution of entanglement of two-electron spins in anisotropically coupled quantum dot

    Full text link
    We study the time evolution of entanglement of two spins in anisotropically coupled quantum dot interacting with the unpolarized nuclear spins environment. We assume that the exchange coupling strength in the z-direction JzJ_z is different from the lateral one JlJ_l. We observe that the entanglement decays as a result of the coupling to the nuclear environment and reaches a saturation value, which depends on the value of the exchange interaction difference J=∥Jl−Jz∥J=\| J_l-J_z\| between the two spins and the strength of the applied external magnetic field. We find that the entanglement exhibits a critical behavior controlled by the competition between the exchange interaction JJ and the external magnetic field. The entanglement shows a quasi-symmetric behavior above and below a critical value of the exchange interaction. It becomes more symmetric as the external magnetic field increases. The entanglement reaches a large saturation value, close to unity, when the exchange interaction is far above or below its critical value and a small one as it closely approaches the critical value. Furthermore, we find that the decay rate profile of entanglement is linear when the exchange interaction is much higher or lower than the critical value but converts to a power law and finally to a Gaussian as the critical value is approached from both directions. The dynamics of entanglement is found to be independent of the exchange interaction for isotropically coupled quantum dot.Comment: 24 pages and 7 figures. v3: major change

    Tuning entanglement and ergodicity in two-dimensional spin systems using impurities and anisotropy

    Get PDF
    We consider the entanglement in a two-dimensional XY model in an external magnetic field h. The model consists of a set of seven localized spin-1/2 particles in a two-dimensional triangular lattice coupled through nearest-neighbor exchange interaction J. We examine the effect of single and double impurities in the system as well as the degree of anisotropy on the nearest-neighbor entanglement and ergodicity of the system. We have found that the entanglement of the system at the different degrees of anisotropy mimics that of the one-dimensional spin systems at the extremely small and large values of the parameter lambda = h/J. The entanglement of the Ising and partially anisotropic systems shows phase transition in the vicinity of lambda = 2, whereas, the entanglement of the isotropic system suddenly vanishes there. Also, we investigate the dynamic response of the system containing single and double impurities to an external exponential magnetic field at different degrees of anisotropy. We have demonstrated that the ergodicity of the system can be controlled by varying the strength and location of the impurities as well as the degree of anisotropy of the coupling
    corecore