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Entanglement dynamics of one-dimensional driven spin systems in time-varying magnetic fields
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We study the dynamics of nearest-neighbor entanglement for a one-dimensional spin chain with a nearest-
neighbor time-dependent Heisenberg coupling J (t) between the spins in the presence of a time-dependent
external magnetic field h(t) at zero and finite temperatures. We consider different forms of time dependence
for the coupling and magnetic field: exponential, hyperbolic, and periodic. Solving the system numerically, we
examined the system-size effect on the entanglement asymptotic value. It was found that, for a small system size,
the entanglement starts to fluctuate within a short period of time after applying the time-dependent coupling.
The period of time increases as the system size increases and disappears completely as the size goes to infinity.
Testing the effect of the transition constant for an exponential or hyperbolic coupling showed a direct impact
on the asymptotic value of the entanglement; the larger the constant is, the lower the asymptotic value and the
more rapid decay of entanglement are, which confirms the nonergodic character of the system. We also found
that, when J (t) is periodic, the entanglement shows a periodic behavior with the same period, which disappears
upon applying periodic magnetic field with the same frequency. Solving the case J (t) = λh(t), for constant λ,
exactly, we showed that the time evolution and asymptotic value of entanglement are dictated solely by the
parameter λ = J/h rather than the individual values of J and h, not only when they are time independent and at
zero temperature, but also when they are time dependent but proportional at zero and finite temperatures for all
degrees of anisotropy.
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I. INTRODUCTION

Quantum entanglement represents one of the cornerstones
of the quantum mechanics theory with no classical analog
[1]. Quantum entanglement is a nonlocal correlation between
two (or more) quantum systems such that the description
of their states has to be done with reference to each other
even if they are spatially well separated. Understanding
and quantifying entanglement may provide an answer for
many questions regarding the behavior of the many-body
quantum systems. Particularly, entanglement is considered as
the physical property responsible for the long-range quantum
correlations accompanying a quantum phase transition in
many-body systems at zero temperature [2–4]. Entanglement
plays a crucial role in many fields of modern physics,
particularly, quantum teleportation, quantum cryptography,
and quantum computing [5,6]. It is considered as the physical
basis for manipulating linear superpositions of quantum states
to implement the different proposed quantum-computing
algorithms. Different physical systems have been proposed
as promising candidates for the future quantum-computing
technology [7–15]. It is a major task in each one of these
considered systems to find a controllable mechanism to
form and coherently manipulate the entanglement between
a two-qubit system, creating an efficient quantum-computing
gate. The coherent manipulation of entangled states has been
observed in different systems such as isolated trapped ions
[16], superconducting junctions [17], and coupled quantum
dots, where the coupling mechanism in the latter system is
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the Heisenberg exchange interaction between electron spins
[18–20]. One of the most interesting proposals for creating a
controllable mechanism in coupled quantum-dot systems was
introduced by Loss et al. [21,22]. The coupling mechanism
is a time-dependent exchange interaction between the two
valence spins on a doubled quantum-dot system, which can
be pulsed over definite intervals resulting in a swap gate. This
control can be achieved by raising and lowering the potential
barrier between the two dots through controllable gate voltage.
In a previous work, a two-atom system with time-dependent
coupling was studied and the critical dependence of the
entanglement and variance squeezing on the strength and
frequency of the coupling was demonstrated [23].

Quantifying entanglement in the quantum states of mul-
tiparticle systems is in the focus of interest in the field
of quantum information. However, quantum entanglement
is very fragile due to the induced decoherence caused by
the inevitable coupling to the environment. Decoherence is
considered as one of the main obstacles toward realizing an
effective quantum-computing system [24]. The main effect
of decoherence is to randomize the relative phases of the
possible states of the considered system. Quantum error
correction [25] and decoherence-free subspace [26,27] have
been proposed to protect the quantum property during the
computation process. Nevertheless, offering a potentially ideal
protection against environmentally induced decoherence is
a difficult task. Moreover, a spin-pair entanglement is a
reasonable measure for decoherence between the considered
two-spin system and its environment constituted by the rest
of the spins on the chain. The coupling between the system
and its environment leads to decoherence in the system and
sweeping out entanglement between the two spins. Therefore,
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monitoring the entanglement dynamics in the considered
system helps us to understand the behavior of the decoherence
between the considered two spins and their environment.
Particularly, the effect of the environment size on the coherence
of quantum states of the system can be considered by watching
the spin-pair entanglement evolution versus the the number of
sites N in the chain.

Developing new experimental techniques enabled the gen-
eration and control of multiparticle entanglement [28–33]
as well as the fabrication of one-dimensional spin chains
[34–36]. This progress in the experimental arena sparked an
intensive theoretical research over the multiparticle systems
and particularly the one-dimensional spin chains [37–46].
The dynamics of entanglement in XY and Ising spin chains
has been studied considering a constant nearest-neighbor ex-
change interaction, in the presence of a time-varying magnetic
field represented by step, exponential, and sinusoidal functions
of time [47,48]. Furthermore, the dynamics of entanglement
in a one-dimensional Ising spin chain at zero temperature
was investigated numerically where the number of spins was
seven at most [49]. The generation and transportation of
the entanglement through the chain, which was irradiated
by a weak resonant field under the effect of an external
magnetic field, were investigated. Recently, the entanglement
in an anisotropic XY model with a small number of spins,
with a time-dependent nearest-neighbor coupling at zero
temperature, was studied too [50]. The time-dependent spin-
spin coupling was represented by a dc part and a sinusoidal ac
part. It was observed that there is an entanglement resonance
through the chain whenever the ac coupling frequency is
matching the Zeeman splitting. Very recently, we have studied
the time evolution of entanglement in a one-dimensional spin
chain in the presence of a time-dependent magnetic field h(t)
considering a time-dependent coupling parameter J (t), where
both h(t) and J (t) were assumed to be of a step-function form
[51]. Solving the problem exactly, we found that the system
undergoes a nonergodic behavior. At zero temperature, we
found that the asymptotic value of the entanglement depends
only on the ratio λ = J/h. However, at nonzero temperatures,
it depends on the individual values of h and J . Also, we have
demonstrated that the quantum effects dominate within certain
regions of the temperature-λ space, which vary significantly
depending on the degree of the anisotropy of the system.

In this paper, we investigate the time evolution of quantum
entanglement in a one-dimensional XY spin-chain system
coupled through nearest-neighbor interaction under the effect
of an external magnetic field at zero and finite temperatures. We
consider both time-dependent nearest-neighbor Heisenberg
coupling J (t) between the spins on the chain and magnetic field
h(t), where the function forms are exponential, periodic, and
hyperbolic in time. Particularly, we focus on the concurrence
as a measure of entanglement between any two adjacent spins
on the chain and its dynamical behavior under the effect of the
time-dependent coupling and magnetic fields. We apply both
analytical and numerical approaches to tackle the problem.
We show that the time evolution and asymptotic behavior
of entanglement depend only on the parameter λ = J/h

rather than the individual values of the coupling and the
magnetic field, not only when they are time independent
and at zero temperature, as was demonstrated by previous

works [47,48,51], but also when they are time dependent but
proportional at both zero and finite temperatures considering
all degrees of anisotropy. As a consequence, we show that
applying a proportional oscillatory magnetic field and coupling
yields a nonoscillatory concurrence. Also, we demonstrate
how the transition rate of an applied magnetic field or
coupling, of exponential or hyperbolic forms, significantly
affects the asymptotic value of the concurrence confirming the
nonergodic behavior of the system. We also test the effect of
the spin-chain size on the fluctuations in the system dynamics
and the asymptotic value of the entanglement.

This paper is organized as follows. In Sec. II, we present
our model and discuss the numerical solution for the the XY

spin chain for a general form of the coupling and magnetic
field. Then, we present an exact solution for the system for the
special case J (t) = λh(t), where λ is a constant. In Sec. III,
we evaluate the entanglement using the magnetization and the
spin-spin correlation functions of the system. We present our
results and discuss them in Sec. IV. Finally, in Sec. V, we
conclude and discuss future directions.

II. TIME-DEPENDENT XY MODEL

A. Numerical solution

In this section, we present a numerical solution for the
XY model of a spin chain with N sites in the presence of a
time-dependent external magnetic field h(t). We consider a
time-dependent coupling J (t) between the nearest-neighbor
spins on the chain. The Hamiltonian for such a system is given
by

H = −J (t)

2
(1 + γ )

N∑
i=1

σx
i σ x

i+1 − J (t)

2
(1 − γ )

×
N∑

i=1

σ
y

i σ
y

i+1 −
N∑

i=1

h(t)σ z
i , (1)

where σi’s are the Pauli matrices and γ is the anisotropy
parameter. For simplicity, we consider h̄ = 1 throughout this
paper. We define the raising and lowering operators a

†
i , ai as

a
†
i = 1

2

(
σx

i + iσ
y

i

)
, ai = 1

2

(
σx

i − iσ
y

i

)
. (2)

Following the standard procedure to treat the Hamiltonian (1),
we introduce Fermi operators b

†
i , bi [52]:

a
†
i = b

†
i exp

⎛
⎝iπ

i−1∑
j=1

b
†
j bj

⎞
⎠ , ai = exp

⎛
⎝−iπ

i−1∑
j=1

b
†
j bj

⎞
⎠ bi.

(3)

Then, by applying Fourier transformation, we obtain

b
†
i = 1√

N

N/2∑
p=−N/2

eijφpc†p, bi = 1√
N

N/2∑
p=−N/2

e−ijφp cp,

(4)

where φp = 2πp

N
. Therefore, the Hamiltonian can be written as

H =
N/2∑
p=1

H̃p, (5)
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FIG. 1. C(i,i + 1) as a function of t with J0 = 0.5, J1 = 2, h = 1, N = 1000 at kT = 0 and (a) J = Jexp, K = 0.1; (b) J = Jexp, K = 10;
(c) J = Jtanh, K = 0.1 ; and (d) J = Jtanh, K = 10.

with H̃p given by

H̃p = αp(t)[c†pcp + c
†
−pc−p] + iJ (t)δp

× [c†pc
†
−p + cpc−p] + 2h(t), (6)

where αp(t) = −2J (t) cos φp − 2h(t) and δp = 2γ sin φp.

As [H̃l,H̃m] = 0 for l,m = 0,1,2, . . . ,N/2, the
Hamiltonian in the 2N -dimensional Hilbert space can
be decomposed into N/2 noncommuting sub-Hamiltonians,
each in a four-dimensional independent subspace. By using
the basis {|0〉,c†pc

†
−p|0〉,c†p|0〉,c†−p|0〉}, we obtain the matrix

representation of H̃p:

H̃p =

⎛
⎜⎜⎜⎜⎜⎝

2h(t) −iJ (t)δp 0 0

iJ (t)δp −4J (t) cos φp − 2h(t) 0 0

0 0 −2J (t) cos φp 0

0 0 0 −2J (t) cos φp

⎞
⎟⎟⎟⎟⎟⎠ . (7)
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FIG. 2. (Color online) C(i,i + 1) as a function of t (units of J−1)
with J = Jexp, J0 = 0.5, J1 = 2, h = 1, K = 1000 at kT = 0 and
N varies from 100 to 300.

Initially, the system is assumed to be in a thermal equi-
librium state and therefore its initial density matrix is given
by

ρp(0) = e−βH̃p(0)

Z
, Z = Tr(e−βH̃p(0)), (8)

where β = 1/kT , k is Boltzmann constant, and T is the
temperature.

Since the Hamiltonian is decomposable, we can find the
density matrix at any time t , ρp(t), for the pth subspace by
solving the Liouville equation, in the Heisenberg representa-
tion, given by

iρ̇p(t) = [H̃p(t),ρp(t)], (9)

which gives

ρp(t) = Up(t)ρp(0)U †
p(t), (10)

where Up(t) is time evolution matrix, which can be obtained
by solving the equation

i U̇p(t) = Up(t)H̃p(t). (11)

To study the effect of a time-varying coupling parameter
J (t), we consider the following forms:

Jexp(t) = J1 + (J0 − J1) e−Kt , (12)

Jcos(t) = J0 − J0 cos (Kt) , (13)

Jsin(t) = J0 − J0 sin (Kt) , (14)

Jtanh(t) = J0 + J1 − J0

2

{
tanh

[
K

(
t − 5

2

)]
+ 1

}
. (15)

Note that Eq. (11) gives two systems of coupled differential
equations with variable coefficients. Such systems can only
be solved numerically, which we adopt in this paper. The
results here are valid for any N (small or large), while in
the thermodynamic limit N → ∞, the sum over φp becomes
an integral over φ, which we do not consider here [51,53].
The finite-size N case has been studied and treated exactly in
different works, which lead to parity effects (see for instance
Refs. [52–54]).

B. An exact solution for proportional J and h

In this section, we present an exact solution of the system
using a general time-dependent coupling J (t) and a magnetic
field with the following form:

J (t) = λ h(t), (16)

where λ is a constant. By using Eqs. (7), (11), and (16), we
obtain

i

(
u̇11 u̇12

u̇21 u̇22

)
=

(
u11 u12

u21 u22

)(
2
λ

−iδp

iδp −4 cos φp − 2
λ

)
J (t)

(17)

and

i u̇33 = −2 cos φp J (t) u33 , u44 = u33. (18)

Equation (17) can be rewritten as

i u̇j = J (t) H ′uj (19)

for j = 1,2, where

H ′ =
(

2
λ

iδp

−iδp 4 cos φp − 2
λ

)
, uj =

(
uj1

uj2

)
. (20)

Introducing a unitary rotation matrix

S =
(

cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
(21)

and using S to diagonalize H ′, we obtain

SH ′S−1 =
(

λ1 0
0 λ2

)
, (22)

where the angles φ and θ were found to be

φ = (n + 1)π, tan 2θ = δp

2 cos φp + 2
λ

, (23)

where n = 0,±1,±2, . . .; therefore,

sin 2θ = δp√
δ2
p + (

2 cos φp + 2
λ

) ,

(24)

cos 2θ = 2 cos φp + 2
λ√

δ2
p + (

2 cos φp + 2
λ

) .

Finding λ1 and λ2, we get

λ1 =
√

δ2
p +

(
2 cos φp + 2

λ

)
− 2 cos φp,

(25)

λ2 = −
√

δ2
p +

(
2 cos φp + 2

λ

)
− 2 cos φp.

Now, we define vj = Suj and substituting in Eq. (19) we get

i v̇j = J (t)

(
λ1 0
0 λ2

)
vj . (26)
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Solving the last equation, we obtain

v1 =
(

cos θ e−iλ1
∫ t

0 J (t ′)dt ′

i sin θ e−iλ2
∫ t

0 J (t ′)dt ′

)
,

(27)

v2 =
(

i sin θ e−iλ1
∫ t

0 J (t ′)dt ′

cos θ e−iλ2
∫ t

0 J (t ′)dt ′

)
.

Finally, u is given by

u11 = cos2 θe−iλ1
∫ t

0 J (t ′)dt ′ + sin2 θe−iλ2
∫ t

0 J (t ′)dt ′ , (28)

u12 = −i sin θ cos θ
{
e−iλ1

∫ t

0 J (t ′)dt ′ − e−iλ2
∫ t

0 J (t ′)dt ′}, (29)

u21 = −u12, (30)

u22 = sin2 θe−iλ1
∫ t

0 J (t ′)dt ′ + cos2 θe−iλ2
∫ t

0 J (t ′)dt ′ , (31)

u33 = u44 = e2i cos φp

∫ t

0 J (t ′)dt ′ , (32)

where

sin θ =

√√√√√√
√

δ2
p + (

2 cos φp + 2
λ

) − (
2 cos φp + 2

λ

)
2
√

δ2
p + (

2 cos φp + 2
λ

) , (33)

cos θ =

√√√√√√
√

δ2
p + (

2 cos φp + 2
λ

) + (
2 cos φp + 2

λ

)
2
√

δ2
p + (

2 cos φp + 2
λ

) . (34)

III. SPIN CORRELATION FUNCTIONS AND
ENTANGLEMENT EVALUATION

In this section, we evaluate the different magnetization and
spin-spin correlation functions of the XY model, then we
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FIG. 3. Dynamics of nearest-neighbor concurrence with γ = 1 for Jcos where J0 = 0.5, h = 1 at kT = 0 and (a) K = 0.1; (b) K = 0.5;
and (c) K = 1.

022314-5



BEDOOR ALKURTASS, GEHAD SADIEK, AND SABRE KAIS PHYSICAL REVIEW A 84, 022314 (2011)

0 50 100 150
0

0.05

0.1

0.15

0

0.5

1

t (units of J−1)

C
(i,

i+
1)

   
   

   
   

 J
(t

),
 h

(t
)

(c)

 

 

J(t)
h(t)

0 50 100 150
0

0.05

0.1

0.15

0

0.5

1

t (units of J−1)

C
(i,

i+
1)

   
   

   
   

 J
(t

),
 h

(t
)

(a)

 

 

J(t)
h(t)

0 50 100 150
0

0.05

0.1

0.15

0

0.5

1

t (units of J−1)

C
(i,

i+
1)

   
   

   
   

J(
t)

, h
(t

)

(b)

 

 

J(t)
h(t)

FIG. 4. Dynamics of nearest-neighbor concurrence with γ = 1 for Jsin with J0 = 0.5, h = 1 at kT = 0 and (a) K = 0.1; (b) K = 0.5; and
(c) K = 1.

evaluate the entanglement in the system. The magnetization
in the z direction is defined as

M = 1

N

N∑
j=1

(
Sz

j

) = 1

N

1/N∑
p=1

Mp, (35)

where Mp = c
†
pcp + c

†
−pc−p − 1. In terms of the density

matrix, it is given by

〈Mz〉 = Tr[Mρ(t)]

Tr[ρ(t)]
= 1

N

1/N∑
p=1

Tr[Mpρp(t)]

Tr[ρp(t)]
. (36)

The spin-correlation functions are defined by

Sx
l,m = 〈

Sx
l Sx

m

〉
, S

y

l,m = 〈
S

y

l Sy
m

〉
, Sz

l,m = 〈
Sz

l S
z
m

〉
, (37)

which can be written in terms of the fermionic operators as
follows [52]:

Sx
l,m = 1

4 〈BlAl+1Bl+1 · · ·Am−1Bm−1Am〉 , (38)

S
y

l,m = (−1)l−m

4
〈AlBl+1Al+1 · · · Bm−1Am−1Bm〉 , (39)

Sz
l,m = 1

4 〈AlBlAmBm〉 , (40)

where

Ai = b
†
i + bi, Bi = b

†
i − bi. (41)

Using the Wick Theorem [55], the expressions (38)–(40) can
be evaluated in terms of the Pfaffians as defined in Ref. [51].
For two neighbor spins l and l + 1,

Sx
l,l+1 = 1

4Fl,l+1, (42)

S
y

l,l+1 = − 1
4Pl,l+1, (43)

and

Sz
l,l+1 = 1

4 (Pl,lPl+1,l+1 − Ql,l+1Gl,l+1 + Pl,l+1Fl,l+1),

(44)

where

Fl,m = 〈BlAm〉 , Pl,m = 〈AlBm〉 ,
(45)

Ql,m = 〈AlAm〉 , Gl,m = 〈BlBm〉 .

To evaluate the entanglement between two quantum sys-
tems in the chain, we use the concurrence which has been
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FIG. 5. Dynamics of nearest-neighbor concurrence with γ = 1 at kT = 0, J0 = 0.5, J1 = 1, K = 0.1 and (a) h(t) = 1; (b) h(t) = J (t) =
Jexp; and (c) h(t) = J (t) = Jtanh.

shown to be a measure of entanglement [56]. The concurrence
C(t) is defined as

C(ρ) = max(0,λa − λb − λc − λd ), (46)

where the λi’s are the positive square root of the eigenvalues,
in a descending order, of the matrix R defined by

R =
√√

ρρ̃
√

ρ, (47)

and ρ̃ is the spin-flipped density matrix given by

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). (48)

Knowing that ρ is symmetrical and real due to the symmetries
of the Hamiltonian and particularly the global phase-flip
symmetry, there will be only six nonzero distinguished matrix
elements of ρ, which take the form [57]

ρ =

⎛
⎜⎝

ρ1,1 0 0 ρ1,4

0 ρ2,2 ρ2,3 0
0 ρ2,3 ρ3,3 0

ρ1,4 0 0 ρ4,4

⎞
⎟⎠ . (49)

Hence, the roots of the matrix R come out to
be λa = √

ρ1,1ρ4,4 + |ρ1,4|, λb = √
ρ2,2ρ3,3 + |ρ2,3|, λc =

|√ρ1,1ρ4,4 − |ρ1,4||, and λd = |√ρ2,2ρ3,3 − |ρ2,3||.
The nonzero matrix elements of ρ can be obtained, in

the same way as in Ref. [51], in terms of the magnetization
equation (36) and the spin-correlation functions (38)–(40).

IV. RESULTS AND DISCUSSION

A. Constant magnetic field

We start with studying the dynamics of the nearest-neighbor
concurrence C(i,i + 1) for the completely anisotropic system
γ = 1, when the coupling parameter is Jexp as well as Jtanh and
the magnetic field is a constant using the numerical solution.
In Fig. 1, we study the dynamics of the concurrence with
the parameters J0 = 0.5, J1 = 2, h = 1, and different values
of the transition constant K = 0.1 and 10. We note that the
asymptotic value of the concurrence depends on K in addition
to the coupling parameter and magnetic field. The larger
the transition constant is, the lower the asymptotic value of
the entanglement and the more rapid decay is. This result
demonstrates the nonergodic behavior of the system, where
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FIG. 6. Dynamics of nearest-neighbor concurrence with γ = 1 at kT = 0 with J0 = h0 = 0.5, K = 1 for (a) Jcos and hcos and (b) Jsin and
hsin.

the asymptotic value of the entanglement is different from the
one obtained under constant coupling J1.

In Fig. 2, we study the effect of the system size N on the
dynamics of the concurrence. We select the parameters J0 =
0.5, J1 = 2, h = 1, and K = 1000. We note that, for all values
of N , the concurrence reaches an approximately constant
value but then starts oscillating after some critical time tc that
increases as N increases, which means that the oscillation
will disappear as we approach an infinite one-dimensional
system. Such oscillations are caused by the spin-wave packet
propagation [48]. We next study the dynamics of the nearest-
neighbor concurrence when the coupling parameter is Jcos

with different values of K , i.e., different frequencies, which
are shown in Fig. 3. We first note that C(i,i + 1) shows a
periodic behavior with the same period of J (t). It has been
shown in a previous work [51] that, for the considered system
at zero temperature, the concurrence depends only on the ratio
J/h. When J ≈ h, the concurrence has a maximum value.
While when J � h or J � h, the concurrence vanishes. In
Fig. 3, one can see that when J = Jmax, C(i,i + 1) decreases

because large values of J destroy the entanglement, while
C(i,i + 1) reaches a maximum value when J = J0 = 0.5. As
J (t) vanishes, C(i,i + 1) decreases because of the magnetic
field domination. In Fig. 4, we study the dynamics of
nearest-neighbor concurrence when J = Jsin. As can be seen,
C(i,i + 1) shows a periodic behavior with the same period as
J (t). We note that we get larger values of C(i,i + 1) compared
to the previous case J = Jcos. This indicates the importance of
an initial concurrence to maintain and yield high concurrence
as time evolves. Comparing our results with the previous
results of time-dependent magnetic field [48], we note that the
behavior of C(i,i + 1) when J = Jcos is similar to its behavior
when h = hsin, where hsin = h0(1 − sin(Kt)), and vice versa.

B. Time-dependent magnetic field

In this section, we use the exact solution to study the con-
currence for four forms of coupling parameter Jexp, Jtanh, Jcos,
and Jsin when J (t) = λh(t), where λ is a constant. We
have compared the exact solution results with the numerical
ones and they have shown coincidence. The dynamics of
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FIG. 7. The behavior asymptotic value of C(i,i + 1) as a function of λ with γ = 1 at (a) kT = 0 and (b) kT = 0.5,1.
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FIG. 8. The behavior asymptotic value of C(i,i + 1) as a function of λ at kT = 0 with (a) γ = 0.5 and (b) γ = 0.

C(i,i + 1) for h(t) = 1 and J = Jexp, J0 = 0.5, J1 = 1 with
K = 0.1 is explored in Fig. 5(a). Comparing with Fig. 5(b),
which shows the dynamics of C(i,i + 1) for h(t) = J (t) =
Jexp, J0 = 0.5, J1 = 1, and K = 0.1, as one can see, the
time-dependent magnetic field caused the asymptotic value of
C(i,i + 1) to decrease. A similar behavior occurs when h(t) =
J (t) = Jtanh, J0 = 0.5, J1 = 1 with K = 0.1 as exploited in
Fig. 5(c). Figures 6(a) and 6(b) show the dynamics of
C(i,i + 1) when h(t) = J (t) = Jcos and h(t) = J (t) = Jsin,
respectively, where J0 = 0.5 and K = 1. As can be noticed,
the concurrence in this case does not show a periodic behavior
as it did when h(t) = 1 in Figs. 3 and 4.

In Fig. 7(a), we study the behavior of the asymptotic value
of C(i,i + 1) as a function of λ at different values of the
parameters J0, J1, and K where J (t) = λh(t). Interestingly,
the asymptotic value of C(i,i + 1) depends only on the initial
conditions, not on the form or behavior of J (t) at t > 0.
This result demonstrates the sensitivity of the concurrence
evolution to its initial value. Testing the concurrence at nonzero
temperatures demonstrates that it maintains the same profile,
but with reduced value with increasing temperature as can
be concluded from Fig. 7(b). Also, the critical value of λ

at which the concurrence vanishes decreases with increasing
temperature as can be observed, which is expected as thermal
fluctuations destroy the entanglement. Finally, in Fig. 8, we
study the partially anisotropic system γ = 0.5 and the isotropic
system γ = 0 with J (0) = 1. We note that the behavior of
C(i,i + 1) in this case is similar to the case of constant
coupling parameter studied previously [51]. We also note that
the behavior depends only on the initial coupling J (0) and
not on the form of J (t) where different forms have been
tested. It is interesting to notice that the results of Figs. 6,
7, and 8 confirm one of the main results of the previous
works [47,48,51], namely, that the dynamic behavior of the
spin system, including entanglement, depends only on the
parameter λ = J/h, not the individual values of h and J

for any degree of anisotropy of the system. In these previous
works, both the coupling and magnetic field were considered
time independent, while in this paper we have assumed

J (t) = λh(t), where h(t) can take any time-dependent form.
This explains why the asymptotic value of the concurrence
depends only on the initial value of the parameters regardless
of their function form. Furthermore, in the previous works, it
was demonstrated that, for finite temperatures, the concurrence
turns out to be dependent not only on λ but on the individual
values of h and J , while according to Fig. 7(b), even at finite
temperatures, the concurrence still depends only on λ where
J (t) = λJ (t) for any form of h(t).

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have studied the dynamics of entanglement in a one-
dimensional XY spin chain coupled through a time-dependent
nearest-neighbor coupling and in the presence of a time-
dependent magnetic field at zero and finite temperatures. We
presented a numerical solution for the system for general
forms of J (t) and h(t) and an exact solution for proportional
J (t) and h(t). For an exponentially increasing J (t), we found
that the asymptotic value of the concurrence depends on
the exponent transition constant value, which confirms the
nonergodic behavior of the system. For a periodic J (t), we
found that the concurrence shows a periodic behavior with
the same period as J (t). On the other hand, for both periodic
coupling and magnetic field with same period, the concurrence
loses its periodic behavior. When J (t) = λh(t), where λ is
a constant, we found that the the dynamical behavior and
asymptotic value of the concurrence depends only on the
initial conditions, regardless of the form of the coupling
parameter (and the magnetic field). This confirms the results
of previous works that the dynamical behavior of the system
depends only on the parameter λ = J/h at zero temperature
for any degree of anisotropy. Furthermore, in this paper, we
have demonstrated that this character is still valid even in the
case of proportional time-dependent coupling and magnetic
field at zero and finite temperatures. This result also explains
the nonoscillatory behavior of concurrence although both the
coupling and the field are oscillating. In the future, we would
like to study the effect of an impurity spin on the entanglement
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along the driven one-dimensional spin chain. It will be also
interesting to study the decoherence of a spin pair (quantum
gate) as a result of coupling to a driven one-dimensional spin
chain acting as its environment.
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