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Tuning entanglement and ergodicity in two-dimensional spin systems using impurities
and anisotropy
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We consider the entanglement in a two-dimensional XY model in an external magnetic field h. The model
consists of a set of seven localized spin- 12 particles in a two-dimensional triangular lattice coupled through
nearest-neighbor exchange interaction J . We examine the effect of single and double impurities in the system as
well as the degree of anisotropy on the nearest-neighbor entanglement and ergodicity of the system.We have found
that the entanglement of the system at the different degrees of anisotropy mimics that of the one-dimensional
spin systems at the extremely small and large values of the parameter λ = h/J . The entanglement of the Ising
and partially anisotropic systems shows phase transition in the vicinity of λ = 2, whereas, the entanglement of
the isotropic system suddenly vanishes there. Also, we investigate the dynamic response of the system containing
single and double impurities to an external exponential magnetic field at different degrees of anisotropy. We
have demonstrated that the ergodicity of the system can be controlled by varying the strength and location of the
impurities as well as the degree of anisotropy of the coupling.

DOI: 10.1103/PhysRevA.85.042313 PACS number(s): 03.67.Mn, 03.65.Ud, 75.10.Jm, 73.43.Nq

I. INTRODUCTION

Quantum entanglement is a cornerstone in the structure of
quantum theory with no classical analog [1]. Entanglement is a
nonlocal correlation between two (or more) quantum systems
such that the description of their states has to be done with
reference to each other even if they are spatially well separated.
Particular fields where entanglement is considered as a
crucial resource are quantum teleportation, cryptography, and
quantumcomputation [2,3]where it provides the physical basis
for manipulating the linear superposition of the quantum states
used to implement the different computational algorithms.
On the other hand, many questions regarding the behavior
of the complex quantum systems significantly rely on a deep
understanding and a good quantification of the entanglement
[4–9]. Particularly, entanglement is considered as the physical
resource responsible for the long-range correlations taking
place in many-body systems during quantum phase transi-
tions. There has been great interest in studying the different
sources of errors in quantum computing and their effect
on quantum gate operations [10,11]. Different approaches
have been proposed for protecting quantum systems during
the computational implementation of algorithms, such as
quantum error correction [12] and decoherence-free subspace
[13,14]. Nevertheless, realizing a practical protection against
the different types of induced decoherence is still a hard task.
Therefore, studying the effect of naturally existing sources of
errors, such as impurities and lack of isotropy in coupling
between the quantum systems implementing the quantum
computing algorithms, is a must. Furthermore, considerable
efforts should be devoted to utilizing such sources to tune
the entanglement rather than eliminating them. The effect of
impurities and anisotropy of coupling between neighbor spins
in a one-dimensional (1D) spin system has been investigated

*Corresponding author: gehad@ksu.edu.sa

[15]. It was demonstrated that the entanglement can be
tuned in a class of one-dimensional systems by varying the
anisotropy of the coupling parameter as well as by introducing
impurities into the spin system. For a physical quantity to be
eligible for an equilibrium statistical mechanical description,
it has to be ergodic, which means that its time average
coincides with its ensemble average. To test ergodicity for
a physical quantity, one has to compare the time evolution
of its physical state to the corresponding equilibrium state.
There has been an intensive effort to investigate ergodicity in
one-dimensional spin chains where it was demonstrated that
the entanglement, magnetization, and spin-spin correlation
functions are nonergodic in Ising and XY spin chains for
a finite number of spins as well as at the thermodynamic
limit [8,16–18].
Studying quantum entanglement in two-dimensional sys-

tems faces more obstacles in comparison to the one-
dimensional case, particularly, the rapid increase in the
dimension of the Hilbert spaces, which lead to much larger
scale calculations relying mainly on the numerical methods.
The existence of exact solutions has contributed enormously
to the understanding of the entanglement for 1D systems
[8,18–20]. In a previous paper, the entanglement in a 19-site
two-dimensional transverse Ising model at zero temperature
[21] was studied. The spin- 12 particles are coupled through
an exchange interaction J and are subject to an external
time-independent magnetic field h. It was demonstrated that,
for such a class of systems, the entanglement can be tuned by
varying the parameter λ = h/J and by introducing impurities
into the system, which showed a quantum phase transition at a
critical value of the parameter λ in the vicinity of 2. Recently,
we have investigated the time evolution of entanglement in
a two-dimensional triangular transverse Ising system with
seven spins in an external magnetic field [22]. Different
time-dependent forms of the magnetic field were applied. The
systems have demonstrated different responses based on the

042313-11050-2947/2012/85(4)/042313(21) ©2012 American Physical Society
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type of applied field where, for a smoothly changing magnetic
field, the system entanglement follows the profile of the field
very closely.
In this paper, we consider the entanglement in a two-

dimensional XY triangular spin system where the nearest-
neighbor spins are coupled through an exchange interaction J

and are subject to an external magnetic field h. We consider
the system at different degrees of anisotropy to test its effect on
the system entanglement and dynamics. The number of spins
in the system is 7 with a number of impurities existing. We
consider two different cases of impurities, the first case is a
single impurity existing either at the border of the system or
at the center with the coupling strength between the impurity
spin and its neighbors different from that between the rest of
the spins. The second case is double impurities, existing both
at the border or one at the border and one at the center. We
consider the coupling between the two impurities as J ′, which
is different from the coupling J ′′ between each one of them
and its neighbors, while the interaction among the other spins
is J .
We show that the entanglement profile of the system

at different degrees of anisotropy has great resemblance to
that of the one-dimensional spin systems as the parameter
λ → 0 and ∞. On the other hand, both the Ising and the
partially anisotropic systems show phase transition behavior
in the vicinity of λ = 2, but the isotropic system shows sharp
step variations in the same region before suddenly vanishing.
Examining the effect of an external exponential magnetic field
on the time evolution of the entanglement showed that the
ergodicity of the system can be tuned by varying the strength
and location of the impurities and the degree of anisotropy in
the system.
This paper is organized as follows. In the next section,

we present our model and quantification of entanglement. In
Sec. III, we consider the case of a single impurity. In Sec. IV,
we study the system with a double impurity. We conclude in
Sec. V.

II. MODEL AND QUANTIFICATION OF ENTANGLEMENT

We consider a set of seven localized spin- 12 particles in a
two-dimensional triangular lattice coupled through exchange
interaction J and subject to an external time-dependent
magnetic field of strength h(t) (see Fig. 1). All the particles
are identical except one (or two) of them, which are considered
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FIG. 1. The two-dimensional triangular spin lattice in the pres-
ence of an external transverse magnetic field.

impurities. The Hamiltonian for such a system is given by

H = − (1+ γ )

2

∑
〈i,j〉

Ji,j σ
x
i σ x

j − (1− γ )

2

∑
〈i,j〉

Ji,j σ
y

i σ
y

j

−h(t)
∑

i

σ z
i , (1)

where 〈i,j 〉 is a pair of nearest-neighbor sites on the lattice
Ji,j = J for all sites except the sites nearest to an impurity site.
For a single impurity, the coupling between the impurity and
its neighbors is Ji,j = J ′ = (α + 1)J , where α measures the
strength of the impurity. For double impurities, Ji,j = J ′ =
(α1 + 1)J is the coupling between the two impurities, and
Ji,j = J ′′ = (α2 + 1)J is the coupling between any one of the
two impurities and its neighbors, whereas, the coupling is just
J between the rest of the spins.
For this model, it is convenient to set J = 1. For a system of

seven spins, its Hilbert space is huge with 27 dimensions, yet
it is exactly diagonalizable using the standard computational
techniques. Exactly solving the Schrödinger equation of the
Hamiltonian (1) yields the system energy eigenvalues Ei

and eigenfunctions ψi . The density matrix of the system is
defined by

ρ = |ψ0〉〈ψ0|, (2)

where |ψ0〉 is the ground-state energy of the entire spin system.
We confine our interest to the entanglement between two spins
at any sites i and j [23]. All the information needed in this case,
at any moment t , is contained in the reduced density matrix
ρi,j (t), which can be obtained from the entire system density
matrix by integrating out all the spin states except i and j . We
adopt the entanglement of formation as a well-known measure
of entanglement whereWootters [24] has shown that, for a pair
of binary qubits, the concurrence C, which goes from 0 to 1,
can be taken as a measure of entanglement. The concurrence
between two sites i and j is defined as

C(ρ) = max{0,ε1 − ε2 − ε3 − ε4}, (3)

where the εi’s are the eigenvalues of the Hermitian matrix
R ≡ √√

ρρ̃
√

ρ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) and σy is
the Pauli matrix of the spin in the y direction. For a pair of
qubits, the entanglement can be written as

E(ρ) = ε(C(ρ)), (4)

where ε is a function of the concurrence C,

ε(C) = h

(
1− √

1− C2

2

)
, (5)

where h is the binary entropy function,

h(x) = −x log2 x − (1− x) log2(1− x). (6)

In this case, the entanglement of formation is given in
terms of another entanglement measure, the concurrence C.
The dynamics of entanglement is evaluated using the same
techniques applied in our previous paper [22]. Specifically, we
apply the step-by-step time-evolution projection technique,
which was proved to give the same exact result as the
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matrix transformation technique where both techniques were
introduced in Ref. [22] but 20 times faster. In this technique,
we assume that our system is initially at t0 in the ground
state at zero temperature |φ〉 with energy, say, ε in an external
magnetic field with strength a. The magnetic field is turned to
a new value b, and the systemHamiltonian becomesH withN

eigenpairs Ei and |ψi〉. The original state |φ〉 can be expanded
in the basis {|ψi〉},

|φ〉 = c1|ψ1〉 + c2|ψ2〉 + · · · + cN |ψN 〉, (7)

where

ci = 〈ψi |φ〉. (8)

When H is independent of time between t and t0, then we can
write

U (t,t0)
∣∣ψi,t0

〉 = e−iH (t>t0)(t−t0)/h̄
∣∣ψi,t0

〉
= e−iEi (t−t0)/h̄

∣∣ψi,t0

〉
, (9)

where U (t,t0) is the time-evolution operator. The ground state
will evolve with time as

|φ(t)〉 = c1|ψ1〉e−iE1(t−t0) + c2|ψ2〉e−iE2(t−t0) + · · ·
+ cN |ψN 〉e−iEN (t−t0)

=
N∑

i=1
ci |ψi〉e−iEi (t−t0), (10)

and the pure state density matrix becomes

ρ(t) = |φ(t)〉〈φ(t)|. (11)

Simply, any complicated function can be treated as a collection
of step functions. When the state evolves to the next step, just
repeat the procedure to get the next step results. Of course, the
lack of smoothness in the magnetic-field function imposes a
challenging obstacle in the calculations, but this can be over-
come by choosing a proper small enough time step. Because
the size of our seven-site system was still manageable, in our
actual calculations, we included all the 27 = 128 states in every
step, without any truncation of the higher-energy eigenstates.
This ensures us no approximation in this step. But the method
itself is aiming at larger size systems, such as the 19-site
XY model. By then, due to the computation limit, cutting
off higher-energy eigenstates might be a necessary action.

III. SINGLE IMPURITY

A. Static system with border impurity

We define a dimensionless coupling parameter λ = h/J ,
and we set J = 1 throughout this paper for convenience. We
start by considering the effect of a single impurity located at
border site 1. The concurrence between impurity site 1 and
site 2, C(1,2), versus the parameter λ for the three different
models, Ising (γ = 1), partially anisotropic (γ = 0.5), and
isotropic XY (γ = 0) at different impurity strengths (α =
−0.5,0,0.5,1) is in Fig. 2. First, the impurity parameter α is set
at zero. For the corresponding Ising model, the concurrence
C(1,2) in Fig. 2(a) demonstrates the usual phase transition
behavior where it starts at zero value and increases gradually
as λ increases reaching a maximum at λ ≈ 2 then decays as
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FIG. 2. (Color online) The concurrence C(1,2) versus the parameter λ with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,0.5,1 for different degrees of anisotropy γ = 1,0.5,0 as shown in the subfigures. The legend for all subfigures
is as shown in (a).
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λ increases further. As the degree of anisotropy decreases, the
behavior of the entanglement changes where it starts with a
finite value at λ = 0 and then shows a step profile for the
small values of λ. For the partially anisotropic case, the step
profile is smooth, and the entanglement mimics the Ising case
as λ increases but with smaller magnitude. The entanglement
of the isotropic XY system shows a sharp step behavior then
suddenly vanishes before reaching λ = 2. Interestingly, the
entanglement behavior of the two-dimensional spin system at
the different degrees of anisotropy mimics the behavior of the
one-dimensional spin system at the same degrees of anisotropy
at the extreme values of the parameter λ. The ground state of
the one-dimensional Isingmodel is characterized by a quantum
phase transition that takes place at the critical value h/J = 1
[5,8], which corresponds to a maximum entanglement in the
system. The order parameter is the magnetization 〈σx〉, which
is different from zero for J � h and zero otherwise. The
ground state is paramagnetic when J/h → 0 where the spins
get aligned in the magnetic-field direction, the z direction.
It is ferromagnetic when J/h → ∞ where the spins are
aligned in the x direction. Both cases cause zero entanglement.
Comparing the entanglement behavior in the two-dimensional
Ising spin system with the one-dimensional system, one can
see a great resemblance except that the critical value becomes
h/J ≈ 2 in the two-dimensional case as shown in Fig. 2.
On the other hand, for the partially anisotropic and isotropic
XY systems, the entanglement of the two-dimensional and
one-dimensional systems agrees at the extreme values of λ

where it vanishes for h � J and reaches a finite value for

h  J . The former case corresponds to an alignment of the
spins in the z direction, paramagnetic state, whereas, the latter
case corresponds to alignment in the x and y directions, which
is a ferromagnetic state.
The effect of a weak impurity (J ′ < J ), α = −0.5, is

shown in Fig. 2(b) where the entanglement behavior is the
same as before except that the entanglement magnitude is
reduced compared with the pure case. On the other hand,
considering the effect of a strong impurity (J ′ > J ) where
α = 0.5 and 1 as shown in Figs. 2(c) and 2(d), respectively, one
can see that the entanglement profile for γ = 1 and 0.5 have
the same overall behavior as in the pure and weak impurity
cases except that the entanglement magnitude becomes higher
as the impurity gets stronger and the peaks shift toward higher
λ values. Nevertheless, the isotropic XY system behaves
differently from the previous cases where it starts to increase
first in a step profile before suddenly dropping to zero again,
which will be explained later. To study the entanglement
between two sites, none of them is impurity, we consider
C(2,4), which is depicted in Fig. 3. There are two main
differences between the behavior of C(2,4) and C(1,2). First,
the magnitude of the entanglement envelope is higher for
C(2,4) for γ = 0.5 and 0 (but not γ = 1) when α = 0, while
C(2,4) is greater than C(1,2) for all γ values for the weak
impurity caseα = 0. This is an interesting result as internal site
entanglement should be smaller in value than the edge sites.
Second, the entanglement of the isotropicXY case increases in
a multistep profile for all values of α before suddenly dropping
to zero.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

λ

C
(2

,4
)

(b)

α = − 0.5

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

λ

C
(2

,4
)

γ=1
γ=0.5
γ=0

α = 0

(a)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

λ

C
(2

,4
)

(d)

α = 1

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

λ

C
(2

,4
) α = 0.5

(c)

1

1

76

5
4

3

2

FIG. 3. (Color online) The concurrence C(2,4) versus the parameter λ with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,0.5,1 for different degrees of anisotropy γ = 1,0.5,0 as shown in the subfigures. The legend for all subfigures
is as shown in (a).
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FIG. 4. (Color online) The concurrence C(1,2) versus the parameter λ with a single impurity at central site 4 with different impurity
coupling strengths α = −0.5,0,0.5,1 for different degrees of anisotropy γ = 1,0.5,0 as shown in the subfigures. The legend for all subfigures
is as shown in (a).

B. Static system with center impurity

To explore the effect of the impurity location, we investigate
the case of a single impurity spin located at site 4, instead of
site 2, where we plot the concurrences C(1,2) and C(1,4)
in Figs. 4 and 5, respectively. Interestingly, while changing
the impurity location has almost no effect on the behavior
of the entanglement C(1,2) of the partially anisotropic and
isotropicXY systems, it has a great impact on that of the Ising
system where the peak value of the entanglement increases
significantly in the weak impurity case and decreases as the
impurity gets stronger as shown in Fig. 4. Now, considering
the entanglement between the central impurity site 4 and
the edge site 1 and comparing with the results in Fig. 3
of the entanglement between edge site 2 and central site
4, one can see that the entanglement C(1,4) profile for all
degrees of anisotropy is very close to C(2,4). Nevertheless,
the entanglement C(1,4) magnitude was lower for the weak
impurity case and higher for the strong impurity, which meant
that the central impurity made a significant change in the
entanglement magnitude.

C. Effect of system energy gap on entanglement

To explain the distinct behavior of the entanglement
corresponding to the different degrees of anisotropy γ , we
depict the lowest few energy eigenvalues of the system at

the different γ values for the two cases of border and central
impurities in Figs. 6 and 7, respectively. As can be noticed
in Fig. 6(a), the energies of the ground state and the first
excited state of the Ising system coincide at the beginning at
the small values of λ until a specific value where they deviate
from each other. This is corresponding to the transition from
the degenerated ground state to the nondegenerated one,
from paramagnetic to ferromagnetic order by breaking the
Z2 symmetry, which explains the phase transition curve
observed in the Ising case. The energy spectrum of the
partially anisotropic XY system is a little bit different at
the small values of λ where the ground state and the first
excited state coincide at the beginning but then deviate
slightly from each other before recombining again and, at
last, separating from each other completely; this behavior
is repeated quite a few times depending on the impurity
strength as illustrated in Fig. 6(b). This energy spectrum
behavior explains the roughness in the ascending part of the
entanglement curves of the partially anisotropic XY system
corresponding to subsequent transitions between the ground
state and the first excited state taking place before reaching
the maximum entanglement point. In Fig. 6(c), the energy
spectrum of the isotropic XY system is explored where
clearly the deviations and recombination between the ground-
and the first excited-state energies become sharper and more
frequent compared with the partially anisotropic system. This
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FIG. 5. (Color online) The concurrence C(1,4) versus the parameter λ with a single impurity at border site 4 with different impurity
coupling strengths α = −0.5,0,0.5,1 for different degrees of anisotropy γ = 1,0.5,0 as shown in the subfigures. The legend for all subfigures
is as shown in (a).
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FIG. 6. (Color online) The energy spectrum versus the parameter λ with a single impurity at border site 1 with impurity coupling strength
α = 1 for different degrees of anisotropy γ = 1,0.5,0 as shown in the subfigures. The legend for all subfigures is as shown in (a).
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FIG. 7. (Color online) The energy spectrum versus the parameter λ with a single impurity at central site 4 with impurity coupling strength
α = 1 for different degrees of anisotropy γ = 1,0.5,0 as shown in the subfigures. The legend for all subfigures is as shown in (a).

distinct behavior of the energy spectrum corresponding to
γ = 0 was the reason for the sharp step behavior of the
entanglement as was shown in Figs. 2 and 3. Critical quantum
behavior in amany-body system happens either when an actual
crossing takes place between the excited state and the ground
state or a limiting avoided level crossing between them exists,
i.e., an energy gap between the two states that vanishes in the
infinite system size limit at the critical point [20]. When a
many-body system crosses a critical point, significant changes
in both its wave function and ground-state energy take place,
which are manifested in the behavior of the entanglement
function. The entanglement in one-dimensional infinite spin
systems, Ising, and XY , was shown to demonstrate scaling
behavior in the vicinity of critical points [23]. The change
in the entanglement across the critical point was quantified
by considering the derivative of the concurrence with respect
to the parameter λ. This derivative was explored versus λ

for different system sizes, and although it did not show
divergence for finite system sizes, it showed clear anomalies
which developed into a singularity at the thermodynamic limit.
The ground state of the Heisenberg spin model is known
to have a double degeneracy for an odd number of spins,
which is never achieved unless the thermodynamic limit is
reached [20]. Particularly, the Ising 1D spin chain in an
external transverse magnetic field has a doubly degenerate
ground state in a ferromagnetic phase that is gapped from
the excitation spectrum by 2J (1− h/J ), which is removed
at the critical point and the system becomes a paramag-
netic phase. Now, let us first consider our two-dimensional

finite-size Ising spin system. The concurrence C14 and its
first derivative are depicted versus λ in Figs. 8(a) and 8(b),
respectively. As one can see, the derivative of the concurrence
shows a strong tendency for being singular at λc = 1.64. The
characteristics of the energy gap between the ground state
and the first excited state as a function of λ are explored in
Fig. 8(c). The system shows strict double degeneracy, zero
energy gap, only at λ = 0, i.e., at zero magnetic field, but
once the magnetic field is on, the degeneracy is lifted, and an
extremely small energy gap develops, which increases very
slowly for small magnetic-field values but increases abruptly
at certain λ values. It is important to emphasize here that, at
λ = 0, regardless of which one of the double ground states
is selected for evaluating the entanglement, the same value
is obtained. The critical point of a phase transition should be
characterized by a singularity in the ground-state energy and
an abrupt change in the energy gap of the system as a function
of the system parameter as it crosses the critical point. To
better understand the behavior of the energy gap across the
prospective critical point and to identify it, we plot the first
and second derivatives of the energy gap as a function of λ

in Fig. 8(d). Interestingly, the first derivative d �E/dλ, which
represents the rate of change in the energy gap as a function
of λ, starts with a zero value at λ = 0 and then increases
very slowly before it shows a great rate of change and finally
reaches a saturation value. This behavior is best represented
by the second derivative d2�E/dλ2, which shows a strong
tendency for being singular at λc = 1.8, which indicates the
highest rate of change in the energy gap as a function of λ. The
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FIG. 8. (Color online) (a) The concurrence C14 versus λ, (b) the first derivative of the concurrence C14 with respect to λ versus λ, (c) the
energy gap between the ground state and the first excited state versus λ, and (d) the first derivative (in units of J ) and second derivative (in
units of J 2) of the energy gap with respect to λ versus λ for the pure Ising system (γ = 1 and α = 0).

reason for the small discrepancy between the two values of λc

extracted from the dC/dλ plot and the one of d2�E/dλ2 is
that the concurrenceC14 is only between two sites and does not
represent thewhole system contrary to the energy gap. One can
conclude that the rate of change in the energy gap as a function
of the system parameter, λ in our case, should be maximum
across the critical point. Turning to the case of the partially
anisotropic spin system, γ = 0.5, presented in Fig. 9, one can
notice from Fig. 9(a) that the concurrence shows few sharp
changes, which is reflected in the energy-gap plot as an equal
number of minima as shown in Fig. 9(b). Nevertheless, again,
there is only one strict double degeneracy at λ = 0, whereas,
the other three energy-gap minima are nonzero and on the
order of 10−5. It is interesting to notice that the anomalies in
both dC/dλ and d2�E/dλ2 are much stronger and sharper
compared with the Ising case as shown in Figs. 9(c) and 9(d).
Finally, the isotropic system, which is depicted in Fig. 10,
shows even sharper energy gap changes as a result of the
sharp changes in the concurrence, and the anomalies in the
derivatives dC/dλ and d2�E/dλ2 are even much stronger
than the previous two cases.

D. System dynamics with impurity

Now, we turn to the dynamics of the two-dimensional spin
system under the effect of a single impurity and different

degrees of anisotropy. We investigate the dynamical reaction
of the system to an applied time-dependent magnetic field
with exponential form h(t) = b + (a − b)e−wt for t > 0 and
h(t) = a for t � 0.
We start by considering the Ising system γ = 1 with a

single impurity at border site 1, which is explored in Fig. 11
where we set a = 1, b = 3.5, and ω = 0.1. For the pure case
α = 0, shown in Fig. 11(a), the results confirm the ergodic
behavior of the system that was demonstrated in our previous
paper [22] where the asymptotic value of the entanglement
coincides with the equilibrium state value at h(t) = b. As
can be noticed from Figs. 11(b)–11(d), neither the weak
nor the strong impurities have an effect on the ergodicity
of the Ising system. Nevertheless, there is a clear effect on
the asymptotic value of entanglements C(1,2) and C(1,4)
but not on C(2,4), which relates two regular sites. The weak
impurity α = −0.5 reduces the asymptotic value of C(1,2)
and C(1,4), whereas, the strong impurities α = 1,2 raise
it compared to the pure case. In Fig. 12, we consider the
same system but under the effect of a weaker exponential
magnetic field with the set of parameters a = 1, b = 1.5, and
ω = 0.1. As can be noticed, the entanglement of the Ising
system is still showing an ergodic behavior at all impurity
strengths. This means that the Ising system with a single
border impurity is always ergodic under the effect of different
impurity strengths and different magnetic-field parameters.
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FIG. 9. (Color online) (a) The concurrence C14 versus λ, (b) the first derivative of the concurrence C14 with respect to λ versus λ, (c) the
energy gap between the ground state and the first excited state versus λ, and (d) the first derivative (in units of J ) and second derivative (in
units of J 2) of the energy gap with respect to λ versus λ for the pure partially anisotropic system (γ = 0.5 and α = 0). Notice that the first
derivative of the energy gap is enlarged ten times its actual scale for clearness.
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gap is enlarged 20 times its actual scale for clearness.
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FIG. 11. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensional Ising lattice (γ = 1) under the effect of an exponential magnetic field with
parameter values a = 1, b = 3.5, and ω = 0.1. The straight lines represent the equilibrium concurrences corresponding to constant magnetic
field h = 3.5. The legend for all subfigures is as shown in (a).
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FIG. 12. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensional Ising lattice (γ = 1) under the effect of an exponential magnetic field with
parameter values a = 1, b = 1.5, and ω = 0.1. The straight lines represent the equilibrium concurrences corresponding to constant magnetic
field h = 1.5. The legend for all subfigures is as shown in (a).
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FIG. 13. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(1,5) with a single impurity at central site 4 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensional Ising lattice (γ = 1) under the effect of an exponential magnetic field with
parameter values a = 1, b = 1.5, and ω = 0.1. The straight lines represent the equilibrium concurrences corresponding to constant magnetic
field h = 1.5. The legend for all subfigures is as shown in (a).

Interestingly, the different impurity strengths have different
effects on the asymptotic value of the entanglements compared
to the previous case under the effect of the new magnetic
field. The weak impurity, as shown in Fig. 12(b), raises the
asymptotic value of C(2,4) and splits those of C(1,2) and
C(1,4) from each other. On the other hand, the strong impurity
effects are depicted in Figs. 12(c) and 12(d), which show
that the asymptotic values of all concurrences are reduced
significantly as the impurity strength increases, contrary to the
previous case. This emphasis is on the important role that the
magnetic-field parameters play beside the impurity strength in
controlling the entanglement behavior.
It is of great interest to examine the effect of the impurity

location, which we investigate in Fig. 13 where a single
impurity is located at central site 4 instead of border site 1
with exponential magnetic-field parameters a = 1, b = 1.5,
and ω = 0.1. Very interestingly, the entanglement behavior
changes significantly as a result of changing the impurity
location. Although the pure Ising system is still ergodic
as shown in Fig. 13(a), the system with weak and strong
impurities becomes nonergodic, which is illustrated in
Figs. 13(b)–13(d), respectively. Again, the weak impurity
raises the asymptotic values, whereas, the strong impurities
reduce them significantly. The dynamics of the partially
anisotropic XY system, under the effect of the exponential

magnetic field with parameters a = 1, b = 3.5, and ω = 0.1,
is explored in Fig. 14. It is remarkable to see that, while
for both the pure and the weak impurity cases α = 0 and
−0.5, the system is nonergodic as shown in Figs. 14(a) and
14(b), and it is ergodic in the strong impurity cases α = 1
and 2 as illustrated in Figs. 14(c) and 14(d). Clearly, the
asymptotic values of the entanglement are higher in the
pure and weak impurity cases compared with the strong
impurities. Changing the magnetic-field parameter value
b to 1.5, one can observe the great impact in Fig. 15
where only the pure system becomes ergodic, whereas,
the system with any impurity strength is nonergodic. This
means that the magnetic-field parameters control ergodicity
as well. In Fig. 16, we study the same system with a single
impurity at central site 4 with magnetic-field parameters
a = 1, b = 1.5, and ω = 0.1. As can be seen from the
different subfigures, the system is ergodic only in the pure
case, and the asymptotic values are higher for the pure and
weak impurity systems compared with the strong impurities.
The complete isotropic XY system with a single border
impurity at site 1 under the effect of an exponential magnetic
field with parameter values a = 1, b = 1.5, and ω = 0.1 is
investigated in Fig. 17. The trivial effect of the magnetic field,
similar to the one-dimensional case results [8], is clear where
the entanglement assumes a constant value for all pair of spins.

042313-11



GEHAD SADIEK, QING XU, AND SABRE KAIS PHYSICAL REVIEW A 85, 042313 (2012)

1

1

76

5
4

3

2

=0.5

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

t (units of J−1)

C
on

cu
rr

en
ce

C(1,2)
C(1,4)
C(2,4)

α = − 0.5
(b)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

t (units of J−1)

C
on

cu
rr

en
ce

α = 0
(a)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

t (units of J−1)

C
on

cu
rr

en
ce α = 1

(c)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

t (units of J−1)
C

on
cu

rr
en

ce

α = 2
(d)

a=1, b=3.5, =0.1

FIG. 14. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensional partially anisotropic lattice (γ = 0.5) under the effect of an exponential magnetic
field with parameter values a = 1, b = 1.5, and ω = 0.1. The straight lines represent the equilibrium concurrences corresponding to constant
magnetic field h = 3.5. The legend for all subfigures is as shown in (b).
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FIG. 15. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensional partially anisotropic lattice (γ = 0.5) under the effect of an exponential magnetic
field with parameter values a = 1, b = 1.5, and ω = 0.1. The straight lines represent the equilibrium concurrences corresponding to constant
magnetic field h = 1.5. The legend for all subfigures is as shown in (a).
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FIG. 16. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at central site 4 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensional partially anisotropic lattice (γ = 0.5) under the effect of an exponential magnetic
field with parameter values a = 1, b = 1.5, and ω = 0.1. The straight lines represent the equilibrium concurrences corresponding to constant
magnetic field h = 1.5. The legend for all subfigures is as shown in (a).
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FIG. 17. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at border site 1 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensionalXY lattice (γ = 0) under the effect of an exponential magnetic field with parameter
values a = 1, b = 1.5, and ω = 0.1. The straight (thicker) lines represent the equilibrium concurrences corresponding to constant magnetic
field h = 1.5. The legend for all subfigures is as shown in (a).
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FIG. 18. (Color online) Dynamics of the concurrences C(1,2),C(1,4),C(2,4) with a single impurity at central site 4 with different impurity
coupling strengths α = −0.5,0,1,2 for the two-dimensionalXY lattice (γ = 0) under the effect of an exponential magnetic field with parameter
values a = 1, b = 1.5, and ω = 0.1. The straight (thicker) lines represent the equilibrium concurrences corresponding to constant magnetic
field h = 1.5. The legend for all subfigures is as shown in (b).

This trivial effect is the result of the fact that, for γ = 0, the
exchange-coupling terms in theHamiltonian commutewith the
magnetic-field term. Nevertheless, one still can see an effect of
the impurity on the ergodicity of the system where, for α = 0
and 1, the system is nonergodic, whereas, for α = −0.5 and
2, it is ergodic as shown in Fig. 17. In fact, testing a wide
range of α values indicates that, for the values approximately
in the range of −0.4 � α � 1.9, the system is nonergodic,
otherwise, it is ergodic, i.e., for small absolute values of the
impurity. Examining the same system under the effect of the
same magnetic field but with a single central impurity, for
a wide range of α, demonstrates that the system becomes
nonergodic at all values of α, which is illustrated in Fig. 18.

IV. DOUBLE IMPURITIES

A. Static system with impurities

In this section, we study the effect of double impurity
where we start with two located at border sites 1 and 2.
We set the coupling strength between the two impurities as
J ′ = (1+ α1)J between any one of the impurities and its
regular nearest neighbors as J ′′ = (1+ α2)J and between
the rest of the nearest-neighbor sites on the lattice as J . The
effect of the impurities’ strength on the concurrence between
different pairs of sites for the Ising lattice is shown in Fig. 19.

In Fig. 19(a), we consider the entanglement between two
impurity sites 1 and 2 under a constant external magnetic
field h = 2. The concurrence C(1,2) takes a large value when
the impurity strengths α1, controlling the coupling between
the impurity sites, is large and when α2, controlling coupling
between impurities and their nearest neighbors, is weak. As α1
decreases and α2 increases, C(1,2) decreases monotonically
until it vanishes. As one can conclude, α1 is more effective
than α2 in controlling the entanglement in this case. On the
other hand, the entanglement between impurity site 1 and
regular central site 4 is illustrated in Fig. 19(b), which behaves
completely different from C(1,2). The concurrence C(1,4) is
mainly controlled by the impurity strength α2 where it starts
with a very small value when the impurity is very weak and
increases monotonically until it reaches a maximum value
at α2 = 0, i.e., with no impurity, and decays again as the
impurity strength increases. The effect of α1 in that case is
less significant and makes the concurrence slowly decrease as
α1 increases, which is expected since, as the coupling between
two border sites 1 and 2 increases, the entanglement between
1 and 4 decreases. It is important to note that, in general,
C(1,2) is much larger than C(1,4) since the border entangle-
ment is always higher than the central one as the entanglement
is shared by many sites. The entanglement between two
regular sites is shown in Fig. 19(c) where the concurrence
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FIG. 19. (Color online) The concurrences C(1,2),C(1,4),C(4,5) versus the impurity coupling strengths α1 and α2 with double impurities
at sites 1 and 2 for the two-dimensional Ising lattice (γ = 1) in an external magnetic field h = 2.

C(4,5) is depicted against α1 and α2, and the entanglement
decays gradually as α2 increases, whereas, α1 has a very small
effect on the entanglement, which slightly decreases as α1
increases as shown. Interestingly, the behavior of the energy
gap between the ground state and the first excited state of
the Ising system �E versus the impurity strengths α1 and α2,
which is explored in Fig. 19(d) has a strong resemblance to that
of the concurrenceC(4,5) except that the decay of�E against
α2 is more rapid. The effect of changing the location of the
impurities is considered in Fig. 20 where the two impurities
exist at sites 1 and 4 in the Ising system. The behavior of
the concurrences is very much the same as in the previous
case except that the profiles of C(1,2) and C(1,4) have been
exchanged as C(1,4) now represents the concurrence between
the two impurity sites.
The partially anisotropic system γ = 0.5 with double

impurity at sites 1 and 2 and under the effect of the external
magnetic field h = 2 is explored in Fig. 21. As one can see,
the overall behavior, especially at the border values of the
impurity strengths, is the same as observed in the Ising case
except that the concurrences suffer a local minimum within
a small range of the impurity strength α2 between 0 and 1
while corresponding to the whole α1 range. The change in
the entanglement around this local minimum takes a steplike
profile, which is very clear in the case of the concurrence
C(1,4) shown in Fig. 21(b). Remarkably, the local minima in
the plotted concurrences coincide with the line of vanishing
energy gap as shown in Fig. 21(d), which means that these

minima correspond to a transition between a ground state
and another one, which takes place as the system parameters
change. The anisotropic XY model with two impurities at
sites 1 and 2 in an external magnetic field h = 1.8 is explored
in Fig. 22. The entanglement for this system shows much
sharper changes as a function of the impurity strengths and
the sharp step changes take place in a narrow region of both
α1 and α2 specifically for −1 � α1 � 1 and −1 � α2 � 0. It
is interesting to note that, again, the sharp step changes in the
entanglement are corresponding to the line ofminimum energy
gap as shown in Fig. 22(d) where this line varies continuously
between a very small value and zero, which explains the many
steps appearing in the different concurrences and, particularly,
C(1,4) depicted in Fig. 22(b).

B. System dynamics with impurities

Now, we turn to the dynamics of the two-dimensional spin
system with double impurity under the effect of an external
exponential magnetic field to test the ergodicity of the system
as we vary the degree of anisotropy or the location of the
impurities. In Fig. 23, we consider the dynamics of the Ising
system with two impurities at sites 1 and 2 under the effect of
an exponential magnetic field with parameters a = 1, b = 2,
and ω = 0.1. As one can see, the system shows an ergodic
behavior for the different values of the impurity strengths
α1,α2 = (0,0),(0,1),(1,0), and (1,1). The Ising system sustains
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FIG. 20. (Color online) The concurrences C(1,2),C(1,4),C(2,5) and the energy gap �E versus the impurity coupling strengths α1 and α2
with double impurities at sites 1 and 4 for the two-dimensional Ising lattice (γ = 1) in an external magnetic field h = 2.
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FIG. 21. (Color online) The concurrences C(1,2),C(1,4),C(4,5) versus the impurity coupling strengths α1 and α2 with double impurities
at sites 1 and 2 for the two-dimensional partially anisotropic lattice (γ = 0.5) in an external magnetic field h = 2.
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FIG. 22. (Color online) The concurrences C(1,2),C(1,4),C(4,5) versus the impurity coupling strengths α1 and α2 with double impurities
at sites 1 and 2 for the two-dimensional XY lattice (γ = 0) in an external magnetic field h = 2.

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

t (units of J−1)

C
on

cu
rr

en
ce

α
1
 = 1, α

2
=1

(d)

0 10 20 30 40 50
0

0.05

0.1

0.15

t (units of J−1)

C
on

cu
rr

en
ce

C(1,2)
C(1,4)
C(5,7)

(a)

α
1
 = 0, α

2
=0

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

t (units of J−1)

C
on

cu
rr

en
ce

α
1
 = 0, α

2
=1

(b)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

t (units of J−1)

C
on

cu
rr

en
ce

α
1
 = 1, α

2
=0

(c)

1

1

76

5
4

3

2
1

2 2 22
=1 a=1, b=2, =0.1

FIG. 23. (Color online) Dynamics of the concurrencesC(1,2),C(1,4),C(5,7) with double impurities at sites 1 and 2 for the two-dimensional
Ising lattice (γ = 1) in an exponentialmagnetic fieldwhere a = 1, b = 2, andw = 0.1. The straight lines represent the equilibrium concurrences
corresponding to constant magnetic field h = 2. The legend for all subfigures is as shown in (a).
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FIG. 24. (Color online) Dynamics of the concurrencesC(1,2),C(1,4),C(5,7) with double impurities at sites 1 and 2 for the two-dimensional
partially anisotropic lattice (γ = 0.5) in an exponential magnetic field where a = 1, b = 2, and w = 0.1. The straight lines represent the
equilibrium concurrences corresponding to constant magnetic field h = 2. The legend for all subfigures is as shown in (a).

its ergodicity for all shown values of impurities strengths
and other tested values. The partially anisotropic system,
under the same condition, behaves differently. Its pure case,
the α1,α2 = (0,1) case, and the α1, α2 = (1,1) case are all
nonergodic as depicted in Figs. 24(a) and 24(b). Nevertheless,
the system with impurity strengths α1 = 1 and α2 = 0 shows
ergodic behavior, which means that the nonergodicity of the
partially anisotropic system is sensitive for the strength and
location of the impurities. The isotropic system is explored
in Fig. 25, which behaves nonergodically for all impurity
strengths. Testing the effect of the impurity location, we
consider the same system with impurities at sites 1 and 4
(see Fig. 26). Whereas, the Ising system shows ergodicity at
all impurity strengths as shown in Fig. 23, the partially and
isotropic XY systems are nonergodic at the different impurity
strengths as plotted in Figs. 27 and 28, respectively.

V. CONCLUSION AND FUTURE DIRECTIONS

We have investigated the nearest-neighbor entanglement
and ergodicity of a two-dimensional XY spin lattice in an
external magnetic field h. The spins are coupled to each
other through nearest-neighbor exchange interaction J . The
number of spins in the lattice is 7 where we may consider
one or two of them as impurities. We have found that the
completely anisotropic (the Ising), the partially anisotropic,

and the isotropic systems behave in a very similar fashion
to that of the one-dimensional spin systems at the extreme,
small, and large values of the parameter λ = h/J but may
deviate at the intermediate values. The first two systems show
phase transition in the vicinity of the parameter critical value
λ = 2, and their entanglement vanishes as λ increases. The
entanglement of the isotropic system changes in a sharp step
profile before suddenly vanishing in the vicinity of λ = 2. The
entanglement dynamics of the system with impurities was
investigated under the effect of an external time-dependent
magnetic field of exponential form. It was found that the
ergodicity of the system can be tuned using the strength and
location of the impurities as well as the degree of anisotropy
of the coupling between the spins. In the future, it would
be interesting to investigate the same systems coupled to a
dissipative environment and to examine the effect of impurity
to tune the decoherence in the spin system and to investigate
the ergodicity status under coupling to the environment.
Furthermore, we would like to investigate the same system
with a larger number of sites to test the system size effect and
to clarify the critical value of the parameter λ using finite-size
scaling [25,26]. Previously, the 19-site triangular static Ising
lattice was treated exactly using the the trace minimization
algorithm [22]. The dynamics of entanglement in the 19-site
XY system is currently under consideration, and by taking
advantage of parallel computing, we can reach 34 spins by far.
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FIG. 25. (Color online) Dynamics of the concurrencesC(1,2),C(1,4),C(5,7) with double impurities at sites 1 and 2 for the two-dimensional
isotropic XY lattice (γ = 0) in an exponential magnetic field where a = 1, b = 1.8, and w = 0.1. The straight (thicker) lines represent the
equilibrium concurrences corresponding to constant magnetic field h = 1.8. The legend for all subfigures is as shown in (a).
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FIG. 26. (Color online) Dynamics of the concurrencesC(1,2),C(1,4),C(5,7) with double impurities at sites 1 and 4 for the two-dimensional
Ising lattice (γ = 1) in an exponentialmagnetic fieldwhere a = 1, b = 2, andw = 0.1. The straight lines represent the equilibrium concurrences
corresponding to constant magnetic field h = 2. The legend for all subfigures is as shown in (a).
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FIG. 27. (Color online) Dynamics of the concurrencesC(1,2),C(1,4),C(5,7) with double impurities at sites 1 and 4 for the two-dimensional
partially anisotropic lattice (γ = 0.5) in an exponential magnetic field where a = 1, b = 2, and w = 0.1. The straight lines represent the
equilibrium concurrences corresponding to constant magnetic field h = 2. The legend for all subfigures is as shown in (a).
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FIG. 28. (Color online) Dynamics of the concurrencesC(1,2),C(1,4),C(5,7) with double impurities at sites 1 and 4 for the two-dimensional
isotropic XY lattice (γ = 0) in an exponential magnetic field where a = 1, b = 1.8, and w = 0.1. The straight (thicker) lines represent the
equilibrium concurrences corresponding to constant magnetic field h = 1.8. The legend for all subfigures is as shown in (a).
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