31 research outputs found

    Radiomics and imaging genomics in precision medicine

    Get PDF
    “Radiomics,” a field of study in which high-throughput data is extracted and large amounts of advanced quantitative imaging features are analyzed from medical images, and “imaging genomics,” the field of study of high-throughput methods of associating imaging features with genomic data, has gathered academic interest. However, a radiomics and imaging genomics approach in the oncology world is still in its very early stages and many problems remain to be solved. In this review, we will look through the steps of radiomics and imaging genomics in oncology, specifically addressing potential applications in each organ and focusing on technical issues

    Measurement Variability in Treatment Response Determination for Non-Small Cell Lung Cancer: Improvements using Radiomics

    Get PDF
    Multimodality imaging measurements of treatment response are critical for clinical practice, oncology trials, and the evaluation of new treatment modalities. The current standard for determining treatment response in non-small cell lung cancer (NSCLC) is based on tumor size using the RECIST criteria. Molecular targeted agents and immunotherapies often cause morphological change without reduction of tumor size. Therefore, it is difficult to evaluate therapeutic response by conventional methods. Radiomics is the study of cancer imaging features that are extracted using machine learning and other semantic features. This method can provide comprehensive information on tumor phenotypes and can be used to assess therapeutic response in this new age of immunotherapy. Delta radiomics, which evaluates the longitudinal changes in radiomics features, shows potential in gauging treatment response in NSCLC. It is well known that quantitative measurement methods may be subject to substantial variability due to differences in technical factors and require standardization. In this review, we describe measurement variability in the evaluation of NSCLC and the emerging role of radiomics. © 2019 Wolters Kluwer Health, Inc. All rights reserved

    Incremental benefits of size-zone matrix-based radiomics features for the prognosis of lung adenocarcinoma: advantage of spatial partitioning on tumor evaluation

    No full text
    © 2022, The Author(s), under exclusive licence to European Society of Radiology.Objectives: Prognostic models of lung adenocarcinoma (ADC) can be built using radiomics features from various categories. The size-zone matrix (SZM) features have a strong biological basis related to tumor partitioning, but their incremental benefits have not been fully explored. In our study, we aimed to evaluate the incremental benefits of SZM features for the prognosis of lung ADC. Methods: A total of 298 patients were included and their pretreatment computed tomography images were analyzed in fivefold cross-validation. We built a risk model of overall survival using SZM features and compared it with a conventional radiomics risk model and a clinical variable-based risk model. We also compared it with other models incorporating various combinations of SZM features, other radiomics features, and clinical variables. A total of seven risk models were compared and evaluated using the hazard ratio (HR) on the left-out test fold. Results: As a baseline, the clinical variable risk model showed an HR of 2.739. Combining the radiomics signature with SZM feature was better (HR 4.034) than using radiomics signature alone (HR 3.439). Combining radiomics signature, SZM feature, and clinical variable (HR 6.524) fared better than just combining radiomics signature and clinical variables (HR 4.202). These results confirmed the added benefits of SZM features for prognosis in lung ADC. Conclusion: Combining SZM feature with the radiomics signature was better than using the radiomics signature alone and the benefits of SZM features were maintained when clinical variables were added confirming the incremental benefits of SZM features for lung ADC prognosis. Key Points: • Size-zone matrix (SZM) features provide incremental benefits for the prognosis of lung adenocarcinoma. • Combining the radiomics signature with SZM features performed better than using a radiomics signature alone.11Nsciescopu

    Tumor margin contains prognostic information: Radiomic margin characteristics analysis in lung adenocarcinoma patients

    No full text
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland.We aimed to investigate the relationship between tumor radiomic margin characteristics and prognosis in patients with lung cancer. We enrolled 334 patients who underwent complete resection for lung adenocarcinoma. A quantitative computed tomography analysis was performed, and 76 radiomic margin characteristics were extracted. The radiomic margin characteristics were correlated with overall survival. The selected clinical variables and radiomic margin characteristics were used to calculate a prognostic model with subsequent internal and external validation. Nearly all of the radiomic margin characteristics showed excellent reproducibility. The least absolute shrinkage and selection operator (LASSO) method was used to select eight radiomic margin characteristics. When compared to the model with clinical variables only (C-index = 0.738), the model incorporating clinical variables and radiomic margin characteristics (C-index = 0.753) demonstrated a higher C-index for predicting overall survival. In the model integrating both clinical variables and radiomic margin characteristics, convexity, a Laplace of Gaussian (LoG) kurtosis of 3, and the roundness factor were each independently predictive of overall survival. In addition, radiomic margin characteristics were also correlated with the micropapillary subtype, and the sphericity value was able to predict the presence of the micropapillary subtype. In conclusion, our study showed that radiomic margin characteristics helped predict overall survival in patients with lung adenocarcinomas, thus implying that the tumor margin contains prognostic information.11Nsciescopu

    Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans

    No full text
    © 2021, The Author(s).Deep learning (DL) is a breakthrough technology for medical imaging with high sample size requirements and interpretability issues. Using a pretrained DL model through a radiomics-guided approach, we propose a methodology for stratifying the prognosis of lung adenocarcinomas based on pretreatment CT. Our approach allows us to apply DL with smaller sample size requirements and enhanced interpretability. Baseline radiomics and DL models for the prognosis of lung adenocarcinomas were developed and tested using local (n = 617) cohort. The DL models were further tested in an external validation (n = 70) cohort. The local cohort was divided into training and test cohorts. A radiomics risk score (RRS) was developed using Cox-LASSO. Three pretrained DL networks derived from natural images were used to extract the DL features. The features were further guided using radiomics by retaining those DL features whose correlations with the radiomics features were high and Bonferroni-corrected p-values were low. The retained DL features were subject to a Cox-LASSO when constructing DL risk scores (DRS). The risk groups stratified by the RRS and DRS showed a significant difference in training, testing, and validation cohorts. The DL features were interpreted using existing radiomics features, and the texture features explained the DL features well.11Nsciescopu

    Comprehensive Computed Tomography Radiomics Analysis of Lung Adenocarcinoma for Prognostication

    No full text
    Background. In this era of personalized medicine, there is an expanded demand for advanced imaging biomarkers that reflect the biology of the whole tumor. Therefore, we investigated a large number of computed tomography-derived radiomics features along with demographics and pathology-related variables in patients with lung adenocarcinoma, correlating them with overall survival. Materials and Methods. Three hundred thirty-nine patients who underwent operation for lung adenocarcinoma were included. Analysis was performed using 161 radiomics features, demographic, and pathologic variables and correlated each with patient survival. Prognostic performance for survival was compared among three models: (a) using only clinicopathological data; (b) using only selected radiomics features; and (c) using both clinicopathological data and selected radiomics features. Results. At multivariate analysis, age, pN, tumor size, type of operation, histologic grade, maximum value of the outer 1/3 of the tumor, and size zone variance were statistically significant variables. In particular, maximum value of outer 1/3 of the tumor reflected tumor microenvironment, and size zone variance represented intratumor heterogeneity. Integration of 31 selected radiomics features with clinicopathological variables led to better discrimination performance. Conclusion. Radiomics approach in lung adenocarcinoma enables utilization of the full potential of medical imaging and has potential to improve prognosis assessment in clinical oncology (c) AlphaMed Press 201

    Usefulness of Contrast-Enhanced CT in a Patient with Acute Phlegmonous Esophagitis: A Case Report and Literature Review

    No full text
    Acute phlegmonous esophagitis is a very rare, life-threatening form of esophagitis, characterized by diffuse bacterial infection and pus formation within the submucosal and muscularis layers of the esophagus. We describe a case in which contrast-enhanced chest CT was useful for evaluating the severity of phlegmonous esophagitis, which was overlooked and underestimated by endoscopy
    corecore