7 research outputs found

    Isolation and quantification of uremic toxin precursor-generating gut bacteria in chronic kidney disease patients

    Get PDF
    In chronic kidney disease (CKD), impaired kidney function results in accumulation of uremic toxins, which exert deleterious biological effects and contribute to inflammation and cardiovascular morbidity and mortality. Protein-bound uremic toxins (PBUTs), such as p-cresyl sulfate, indoxyl sulfate and indole-3-acetic acid, originate from phenolic and indolic compounds, which are end products of gut bacterial metabolization of aromatic amino acids (AAA). This study investigates gut microbial composition at different CKD stages by isolating, identifying and quantifying PBUT precursor-generating bacteria. Fecal DNA extracts from 14 controls and 138 CKD patients were used to quantify total bacterial number and 11 bacterial taxa with qPCR. Moreover, isolated bacteria from CKD 1 and CKD 5 fecal samples were cultured in broth medium supplemented with AAA under aerobic and anaerobic conditions, and classified as PBUT precursor-generators based on their generation capacity of phenolic and indolic compounds, measured with U(H)PLC. In total, 148 different fecal bacterial species were isolated, of which 92 were PBUT precursor-generators. These bacterial species can be a potential target for reducing PBUT plasma levels in CKD. qPCR indicated lower abundance of short chain fatty acid-generating bacteria, Bifidobacterium spp. and Streptococcus spp., and higher Enterobacteriaceae and E. coli with impaired kidney function, confirming an altered gut microbial composition in CKD

    High Acetate Concentration Protects Intestinal Barrier and Exerts Anti-Inflammatory Effects in Organoid-Derived Epithelial Monolayer Cultures from Patients with Ulcerative Colitis

    No full text
    Short-chain fatty acids as well as their bacterial producers are of increasing interest in inflammatory bowel diseases. Although less studied compared to butyrate, acetate might also be of interest as it may be less toxic to epithelial cells, stimulate butyrate-producing bacteria by cross-feeding, and have anti-inflammatory and barrier-protective properties. Moreover, one of the causative factors of the probiotic potency of Saccharomyces cerevisae var. boulardii is thought to be its high acetate production. Therefore, the objective was to preclinically assess the effects of high acetate concentrations on inflammation and barrier integrity in organoid-based monolayer cultures from ulcerative colitis patients. Confluent organoid-derived colonic epithelial monolayers (n = 10) were exposed to basolateral inflammatory stimulation or control medium. After 24 h, high acetate or control medium was administered apically for an additional 48 h. Changes in TEER were measured after 48 h. Expression levels of barrier genes and inflammatory markers were determined by qPCR. Pro-inflammatory proteins in the supernatant were quantified using the MSD platform. Increased epithelial resistance was observed with high acetate administration in both inflamed and non-inflamed conditions, together with decreased expression levels of IL8 and TNFĪ± and CLDN1. Upon high acetate administration to inflamed monolayers, upregulation of HIF1Ī±, MUC2, and MKI67, and a decrease of the majority of pro-inflammatory cytokines was observed. In our patient-derived human epithelial cell culture model, a protective effect of high acetate administration on epithelial resistance, barrier gene expression, and inflammatory protein production was observed. These findings open up new possibilities for acetate-mediated management of barrier defects and inflammation in IBD

    Gut microbiome profiling uncovers a lower abundance of Butyricicoccus in advanced stages of chronic kidney disease

    No full text
    Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins which exert deleterious effects on various organ systems. Several of these uremic toxins originate from the bacterial metabolization of aromatic amino acids in the colon. This study assessed whether the gut microbial composition varies among patients in different stages of CKD. Uremic metabolites were quantified by UPLC/fluorescence detection and microbial profiling by 16S rRNA amplicon sequencing. Gut microbial profiles of CKD patients were compared among stages 1-2, stage 3 and stages 4-5. Although a substantial inter-individual difference in abundance of the top 15 genera was observed, no significant difference was observed between groups. Bristol stool scale (BSS) correlated negatively with p-cresyl sulfate and hippuric acid levels, irrespective of the intake of laxatives. Butyricicoccus, a genus with butyrate-generating properties, was decreased in abundance in advanced stages of CKD compared to the earlier stages (p = 0.043). In conclusion, in this cross-sectional study no gradual differences in the gut microbial profile over the different stages of CKD were observed. However, the decrease in the abundance of Butyricicoccus genus with loss of kidney function stresses the need for more in-depth functional exploration of the gut microbiome in CKD patients not on dialysis

    Treponema peruense sp. nov., a commensal spirochaete isolated from human faeces

    No full text
    A Gram-stain-negative, obligatory anaerobic spirochaete (RCC2812(T)) was isolated from a faecal sample obtained from an individual residing in a remote Amazonian community in Peru. The bacterium showed highest 16S rRNA gene sequence similarity to the pig intestinal spirochete Treponema succinifaciens (89.48 %). Average nucleotide identity values between strain RCC2812(T) and all available Treponema genomes from validated type strains were all <73 %, thus clearly lower than the species delineation threshold. The DNA G+C content of RCC2812(T) was 41.24 mol%. Phenotypic characterization using the API-ZYM and API 20A systems confirmed the divergent position of this bacterium within the genus Treponema. Strain RCC2812(T) could be differentiated from the phylogenetically most closely related T. succinifaciens by the presence of alkaline phosphatase and alpha-glucosidase activities. Unlike T. succinifaciens, strain RCC2812(T) grew equally well with or without serum. Strain RCC2812(T) is the first commensal Treponema isolated from the human faecal microbiota of remote populations, and based on the collected data represents a novel Treponema species for which the name Treponema peruense sp. nov. is proposed. The type strain is RCC2812(T) (=LMG 31794(T)=CIP 111910(T))

    Microbial characterization of probiotics-Advisory report of the Working Group "8651 Probiotics" of the Belgian Superior Health Council (SHC).

    Get PDF
    When ingested in sufficient numbers, probiotics are expected to confer one or more proven health benefits on the consumer. Theoretically, the effectiveness of a probiotic food product is the sum of its microbial quality and its functional potential. Whereas the latter may vary much with the body (target) site, delivery mode, human target population, and health benefit envisaged microbial assessment of the probiotic product quality is more straightforward. The range of stakeholders that need to be informed on probiotic quality assessments is extremely broad, including academics, food and biotherapeutic industries, healthcare professionals, competent authorities, consumers, and professional press. In view of the rapidly expanding knowledge on this subject, the Belgian Superior Health Council installed Working Group "8651 Probiotics" to review the state of knowledge regarding the methodologies that make it possible to characterize strains and products with purported probiotic activity. This advisory report covers three main steps in the microbial quality assessment process, i.e. (i) correct species identification and strain-specific typing of bacterial and yeast strains used in probiotic applications, (ii) safety assessment of probiotic strains used for human consumption, and (iii) quality of the final probiotic product in terms of its microbial composition, concentration, stability, authenticity, and labeling

    Coordination Dynamics

    No full text
    corecore