413 research outputs found

    Genetic Diversity Among Banana streak virus Isolates from Australia

    Get PDF
    Banana streak virus (BSV) is an important pathogen of bananas and plantains (Musa spp.) throughout the world. We have cloned and sequenced part of the genomes of four isolates of BSV from Australia, designated BSV-RD, BSV-Cav, BSV-Mys, and BSV-GF. These isolates originated from banana cvs. Red Dacca, Williams, Mysore, and Goldfinger, respectively. All clones contained a sequence covering part of open reading frame III and the intergenic region of the badnavirus genome. The sequences were compared with those of other badnaviruses, including BSV-Onne, a previously characterized isolate from Nigeria. The BSV-RD sequence was virtually identical to that of BSV-Onne, differing by only two nucleotides over 1,292 bp. However, BSV-Cav, -Mys, and -GF were divergent in nucleotide sequence. Phylogenetic analyses using conserved sequences in the ribonuclease H domain revealed that all BSV isolates were more closely related to each other than to any other badnavirus. BSV-Cav was most closely related to BSV-Onne, and there was 95.1% identity between the two amino acid sequences. Other relationships between the BSV isolates were less similar, with sequence identities ranging from 66.4 to 78.2%, which is a magnitude comparable to the distance between some of the recognized badnavirus species. Immunocapture-polymerase chain reaction assays have been developed, allowing specific detection and differentiation of the four isolates of BSV

    Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation

    Get PDF
    Terminally differentiated neutrophils are short-lived but the key effector cells of the innate immune response, and have a prominent role in the pathogenesis and propagation of many inflammatory diseases. Delayed apoptosis, which is responsible for their extended longevity, is critically dependent on a balance of intracellular survival versus pro-apoptotic proteins. Here, we elucidate the mechanism by which the cyclin-dependent kinase (CDK) inhibitor drugs such as R-roscovitine and DRB (5,6-dichloro-1-beta--ribofuranosylbenzimidazole) mediate neutrophil apoptosis. We demonstrate (by a combination of microarray, confocal microscopy, apoptosis assays and western blotting) that the phosphorylation of RNA polymerase II by CDKs 7 and 9 is inhibited by R-roscovitine and that specific effects on neutrophil transcriptional capacity are responsible for neutrophil apoptosis. Finally, we show that specific CDK7 and 9 inhibition with DRB drives resolution of neutrophil-dominant inflammation. Thus, we highlight a novel mechanism that controls both primary human neutrophil transcription and apoptosis that could be targeted by selective CDK inhibitor drugs to resolve established inflammation

    Neglected Tropical Diseases, Neglected Data Sources, and Neglected Issues

    Get PDF
    BACKGROUND: Lymphatic filariasis (LF) is a so-called neglected tropical disease, currently overshadowed by higher-profile efforts to address malaria, tuberculosis, and HIV/AIDS. Despite recent successes in arresting transmission, some 40 million people who already have the disease have been largely neglected. This study aims to increase understanding of how this vulnerable, neglected group can be helped. METHODS: We used purposive sampling to select 60 men and women with filarial lymphoedema (45 with filarial elephantiasis and 15 men with filarial hydrocoele) from the south of Sri Lanka in 2004-2005. Participants were selected to give a balance of men and women and poor and nonpoor, and a range of stages of the disease. Participants' experiences and the consequences of their disease for the household were explored with in-depth qualitative, semistructured interviews. FINDINGS: LF was extremely debilitating to participants over long periods of time. The stigma attached to the condition caused social isolation and emotional distress, and delayed diagnosis and treatment, resulting in undue advancement of the disease. Free treatment services at government clinics were avoided because the participants' condition would be identifiable in public. Loss of income due to the condition was reported by all households in the sample, not just the poorest. Households that were already on low incomes were pushed into near destitution, from which it was almost impossible to escape. Affected members of low-income households also had less opportunity to obtain appropriate treatment from distant clinics, and had living and working conditions that made hygiene and compliance difficult. SIGNIFICANCE: This highly vulnerable category of patients has low visibility, thus becoming marginalized and forgotten. With an estimated 300,000 total cases of elephantiasis and/or oedema in Sri Lanka, and around 300,000 men with filarial hydrocoele, the affected households will need help and support for many years to come. These individuals should be specially targeted for identification, outreach, and care. The global strategy for elimination is aimed at the cessation of transmission, but there will remain some 40 million individuals with clinical manifestations whose needs and problems are illustrated in this study

    Chronic Nicotine Modifies Skeletal Muscle Na,K-ATPase Activity through Its Interaction with the Nicotinic Acetylcholine Receptor and Phospholemman

    Get PDF
    Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21–31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (−4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser63 and Ser68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM

    Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Get PDF
    BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity

    Cyclophilin B Interacts with Sodium-Potassium ATPase and Is Required for Pump Activity in Proximal Tubule Cells of the Kidney

    Get PDF
    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA

    The representation of protein complexes in the Protein Ontology (PRO)

    Get PDF
    BACKGROUND: Representing species-specific proteins and protein complexes in ontologies that are both human- and machine-readable facilitates the retrieval, analysis, and interpretation of genome-scale data sets. Although existing protin-centric informatics resources provide the biomedical research community with well-curated compendia of protein sequence and structure, these resources lack formal ontological representations of the relationships among the proteins themselves. The Protein Ontology (PRO) Consortium is filling this informatics resource gap by developing ontological representations and relationships among proteins and their variants and modified forms. Because proteins are often functional only as members of stable protein complexes, the PRO Consortium, in collaboration with existing protein and pathway databases, has launched a new initiative to implement logical and consistent representation of protein complexes. DESCRIPTION: We describe here how the PRO Consortium is meeting the challenge of representing species-specific protein complexes, how protein complex representation in PRO supports annotation of protein complexes and comparative biology, and how PRO is being integrated into existing community bioinformatics resources. The PRO resource is accessible at http://pir.georgetown.edu/pro/. CONCLUSION: PRO is a unique database resource for species-specific protein complexes. PRO facilitates robust annotation of variations in composition and function contexts for protein complexes within and between species

    Protein Phosphatase 2A Interacts with the Na+,K+-ATPase and Modulates Its Trafficking by Inhibition of Its Association with Arrestin

    Get PDF
    Background: The P-type ATPase family constitutes a collection of ion pumps that form phosphorylated intermediates during ion transport. One of the best known members of this family is the Na +,K +-ATPase. The catalytic subunit of the Na +,K +-ATPase includes several functional domains that determine its enzymatic and trafficking properties. Methodology/Principal Findings: Using the yeast two-hybrid system we found that protein phosphatase 2A (PP2A) catalytic C-subunit is a specific Na +,K +-ATPase interacting protein. PP-2A C-subunit interacted with the Na +,K +-ATPase, but not with the homologous sequences of the H +,K +-ATPase. We confirmed that the Na +,K +-ATPase interacts with a complex of A- and C-subunits in native rat kidney. Arrestins and G-protein coupled receptor kinases (GRKs) are important regulators of G-protein coupled receptor (GPCR) signaling, and they also regulate Na +,K +-ATPase trafficking through direct association. PP2A inhibits association between the Na +,K +-ATPase and arrestin, and diminishes the effect of arrestin on Na +,K +-ATPase trafficking. GRK phosphorylates the Na +,K +-ATPase and PP2A can at least partially reverse this phosphorylation. Conclusions/Significance: Taken together, these data demonstrate that the sodium pump belongs to a growing list of io
    corecore