112 research outputs found

    Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation

    Get PDF
    Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances under all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization-the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10-15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V and H channels, which is quantified by the polarization ratio. Using dual-polarization observations from the Global Precipitation Mission microwave imager (GMI), suitable values for were found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with a broadly neutral impact on the forecast but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders and at frequencies above 183.0 GHz where the polarization can be even stronger

    On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies

    Get PDF
    With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly \ub12 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes

    On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies

    Get PDF
    With the new generation of microwave instruments and, especially, the Ice Cloud Imager covering submillimeter frequencies, it is necessary to evaluate the performance of the operational Radiative Transfer model for TOVS (RTTOV). Thus, an intercomparison study has been conducted between RTTOV and the reference model ARTS (Atmospheric Radiative Transfer Simulator), with an emphasis on cloudy and precipitating conditions, covering frequencies between ≈53.6 and ≈664.0 GHz. Overall a rather good agreement is found between the δ-Eddington solution embedded in the scattering solver of RTTOV, RTTOV-SCATT, and the discrete ordinate solution embedded in ARTS. Under clear-sky conditions, given a consistent spectroscopy, the agreement is within 0.4 K over all frequencies considered. When idealized, homogeneous cloudy conditions are employed, the agreement is mostly ±2 K; this range is exceeded only at high scattering conditions. However, the following weaknesses are identified: the δ-Eddington solution fails to produce deep enough brightness temperature depressions at increasingly high scattering conditions and is not sufficient to capture the phase function structures at size parameters above 2–3; conditions typically found at around 664.0 GHz. When realistic hydrometeor profiles are employed, δ-Eddington leads to a root mean squared error of 1 K, with individual errors between 0 and 4 K. Infrequently, and in localized areas, larger discrepancies are identified, exceeding 10 K. However, these inaccuracies stemming from the simplified physics of RTTOV-SCATT were found at least an order of magnitude smaller than the cloud and precipitation representation errors assigned in data assimilation. Thus, we support the use of RTTOV-SCATT at submillimeter frequencies for operational purposes.Fil: Barlakas, Vasileios. Chalmers University of Technology; SueciaFil: Galligani, Victoria Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: Geer, Alan J.. European Centre For Medium-range Weather Forecasts; Reino UnidoFil: Eriksson, Patrick. Chalmers University of Technology; Sueci

    Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0

    Get PDF
    Satellite observations of radiation in the microwave and sub-millimetre spectral regions (broadly from 1 to 1000 GHz) can have strong sensitivity to cloud and precipitation particles in the atmosphere. These particles (known as hydrometeors) scatter, absorb, and emit radiation according to their mass, composition, shape, internal structure, and orientation. Hence, microwave and sub-millimetre observations have applications including weather forecasting, geophysical retrievals and model validation. To simulate these observations requires a scattering-capable radiative transfer model and an estimate of the bulk optical properties of the hydrometeors. This article describes the module used to integrate single-particle optical properties over a particle size distribution (PSD) to provide bulk optical properties for the Radiative Transfer for TOVS microwave and sub-millimetre scattering code, RTTOV-SCATT, a widely used fast model. Bulk optical properties can be derived from a range of particle models including Mie spheres (liquid and frozen) and non-spherical ice habits from the Liu and Atmospheric Radiative Transfer Simulator (ARTS) databases, which include pristine crystals, aggregates, and hail. The effects of different PSD and particle options on simulated brightness temperatures are explored, based on an analytical two-stream solution for a homogeneous cloud slab. The hydrometeor scattering "spectrum" below 1000 GHz is described, along with its sensitivities to particle composition (liquid or ice), size and shape. The optical behaviour of frozen particles changes in the frequencies above 200 GHz, moving towards an optically thick and emission-dominated regime more familiar from the infrared. This region is little explored but will soon be covered by the Ice Cloud Imager (ICI)

    Implementation of a Discrete Dipole Approximation Scattering Database Into Community Radiative Transfer Model

    Get PDF
    The Community Radiative Transfer Model (CRTM) is a fast model that requires bulk optical properties of hydrometeors in the form of lookup tables to simulate all-sky satellite radiances. Current cloud scattering lookup tables of CRTM were generated using the Mie-Lorenz theory thus assuming spherical shapes for all frozen habits, while actual clouds contain frozen hydrometeors with different shapes. The Discrete Dipole Approximation (DDA) technique is an effective technique for simulating the optical properties of non-spherical hydrometeors in the microwave region. This paper discusses the implementation and validation of a comprehensive DDA cloud scattering database into CRTM for the microwave frequencies. The original DDA database assumes total random orientation in the calculation of single scattering properties. The mass scattering parameters required by CRTM were then computed from single scattering properties and water content dependent particle size distributions. The new lookup tables eliminate the requirement for providing the effective radius as input to CRTM by using the cloud water content for the mass dimension. A collocated dataset of short-term forecasts from Integrated Forecast System of the European Center for Medium-Range Weather Forecasts and satellite microwave data was used for the evaluation of results. The results overall showed that the DDA lookup tables, in comparison with the Mie tables, greatly reduce the differences among simulated and observed values. The Mie lookup tables especially introduce excessive scattering for the channels operating below 90\ua0GHz and low scattering for the channels above 90\ua0GHz

    The Convex Geometry of Linear Inverse Problems

    Get PDF
    In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered are those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases such as sparse vectors and low-rank matrices, as well as several others including sums of a few permutations matrices, low-rank tensors, orthogonal matrices, and atomic measures. The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery. Thus this work extends the catalog of simple models that can be recovered from limited linear information via tractable convex programming

    Sooty Mangabey Genome Sequence Provides Insight into AIDS Resistance in a Natural SIV Host

    Get PDF
    In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS
    • …
    corecore