235 research outputs found

    Cells, Humans and Societies: How are they Regulated?

    Get PDF

    Ultrafast dynamics in the presence of antiferromagnetic correlations in electron-doped cuprate La2−x_{2-x}Cex_xCuO4±δ_{4\pm\delta}

    Get PDF
    We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2−x_{2-x}Cex_xCuO4_4 (LCCO) with dopings of x==0.08 (underdoped) and x==0.11 (optimally doped). Above Tc_c, we observe fluence-dependent relaxation rates which onset at a similar temperature that transport measurements first see signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates is consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF\Delta_{AF}) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF\omega>2\Delta_{AF}) excitations in these compounds and set limits on the timescales on which antiferromagnetic correlations are static

    Examination of forest products trade between Turkey and European Union countries with gravity model approach

    Get PDF
    The success of getting in the foreign trade forms one of the basic stones of economic development for countries. The current and potential trading volume among countries and determining the main factors affecting trade are quite important. The trade currents of the European Union (EU) countries and Turkey in the forest products industry field were analyzed by the gravity model in this study. For this reason, the panel data method was used for 2000 - 2006 periods. The results show the existence of a high degree of trade integration between Turkey and EU. The estimated gravity models explained 63% of the variation regarding the volume of bilateral trade flows in the EU and Turkey. Furthermore, it was determined that GDP had a positive effect on the amount of foreign trade while distance had a negativeeffect; and Turkey has lower trading volume with the EU countries than its potential regarding the forest products industry field

    Observation of spin Coulomb drag in a two-dimensional electron gas

    Get PDF
    An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, "up" and "down", so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions

    Rapid and Precise Determination of Zero-Field Splittings by Terahertz Time-Domain Electron Paramagnetic Resonance Spectroscopy

    Full text link
    Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g-factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.Comment: 36 pages, 30 figures, 1 tabl

    A review of Morgagni and Bochdalek hernias in adults

    Get PDF
    The incidence of Bochdalek and Morgagni hernias among adults is very rare. The purpose of this study was to determine retrospectively the prevalence and characteristics of adult Bochdalek and Morgagni hernias in a decade. Consequently, we demonstrated 12 patients with Bochdalek and 8 patients with Morgagni hernias. We presented plain radiography, operation images, and computed tomography findings of an adult patient with symptoms due to Bochdalek and Morgagni hernias. In surgical repair, the Morgagni hernia is best approached via laparotomy, and the Bochdalek hernia can be treated through thoracotomy or laparotomy. (Folia Morphol 2011; 70, 1: 5-12

    Doppler velocimetry of spin propagation in a two-dimensional electron gas

    Full text link
    Controlling the flow of electrons by manipulation of their spin is a key to the development of spin-based electronics. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. Here we report the application of Doppler velocimetry to resolve the motion of spin-polarized electrons in GaAs quantum wells driven by a drifting Fermi sea. We find that the spin mobility tracks the high electron mobility precisely as a function of T. However, we also observe that the coherent precession of spins driven by spin-orbit interaction, which is essential for the operation of a broad class of spin logic devices, breaks down at temperatures above 150 K for reasons that are not understood theoretically
    • …
    corecore