389 research outputs found
Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene
We investigated the transient photoconductivity of graphene at various
gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We
demonstrated that graphene exhibits semiconducting positive photoconductivity
near zero carrier density, which crosses over to metallic negative
photoconductivity at high carrier density. Our observations are accounted for
by considering the interplay between photo-induced changes of both the Drude
weight and the carrier scattering rate. Notably, we observed multiple sign
changes in the temporal photoconductivity dynamics at low carrier density. This
behavior reflects the non-monotonic temperature dependence of the Drude weight,
a unique property of massless Dirac fermions
Joint Deep Image Restoration and Unsupervised Quality Assessment
Deep learning techniques have revolutionized the fields of image restoration
and image quality assessment in recent years. While image restoration methods
typically utilize synthetically distorted training data for training, deep
quality assessment models often require expensive labeled subjective data.
However, recent studies have shown that activations of deep neural networks
trained for visual modeling tasks can also be used for perceptual quality
assessment of images. Following this intuition, we propose a novel
attention-based convolutional neural network capable of simultaneously
performing both image restoration and quality assessment. We achieve this by
training a JPEG deblocking network augmented with "quality attention" maps and
demonstrating state-of-the-art deblocking accuracy, achieving a high
correlation of predicted quality with human opinion scores.Comment: 4 Pages, 2 figures, 3 table
Observation of spin Coulomb drag in a two-dimensional electron gas
An electron propagating through a solid carries spin angular momentum in
addition to its mass and charge. Of late there has been considerable interest
in developing electronic devices based on the transport of spin, which offer
potential advantages in dissipation, size, and speed over charge-based devices.
However, these advantages bring with them additional complexity. Because each
electron carries a single, fixed value (-e) of charge, the electrical current
carried by a gas of electrons is simply proportional to its total momentum. A
fundamental consequence is that the charge current is not affected by
interactions that conserve total momentum, notably collisions among the
electrons themselves. In contrast, the electron's spin along a given spatial
direction can take on two values, "up" and "down", so that the spin current and
momentum need not be proportional. Although the transport of spin polarization
is not protected by momentum conservation, it has been widely assumed that,
like the charge current, spin current is unaffected by electron-electron (e-e)
interactions. Here we demonstrate experimentally not only that this assumption
is invalid, but that over a broad range of temperature and electron density,
the flow of spin polarization in a two-dimensional gas of electrons is
controlled by the rate of e-e collisions
Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission
In high-temperature superconductivity, the process that leads to the
formation of Cooper pairs, the fundamental charge carriers in any
superconductor, remains mysterious. We use a femtosecond laser pump pulse to
perturb superconducting Bi2Sr2CaCu2O8+{\delta}, and study subsequent dynamics
using time- and angle-resolved photoemission and infrared reflectivity probes.
Gap and quasiparticle population dynamics reveal marked dependencies on both
excitation density and crystal momentum. Close to the d-wave nodes, the
superconducting gap is sensitive to the pump intensity and Cooper pairs
recombine slowly. Far from the nodes pumping affects the gap only weakly and
recombination processes are faster. These results demonstrate a new window into
the dynamical processes that govern quasiparticle recombination and gap
formation in cuprates.Comment: 22 pages, 9 figure
A Numerical Analysis of Laminar Forced Convection and Entropy Generation of a Diamond-Fe3O4/Water Hybrid Nanofluid in a Rectangular Minichannel
The convective heat transfer and entropy generation of diamond-Fe3O4/water hybrid nanofluid through a rectangular minichannel is numerically investigated under laminar flow conditions. Nanoparticle volume fractions for diamond-Fe3O4/water hybrid nanofluid are in the range 0.05-0.20% and Reynolds number varies from 100 to 1000. The finite volume method is used in the numerical computation. The results obtained for diamond-Fe3O4/water hybrid nanofluid are compared with those of diamond/water and Fe3O4/water conventional nanofluids. It is found that 0.2% diamond-Fe3O4 hybrid nanoparticle addition to pure water provides convective heat transfer coefficient enhancement of 29.96%, at Re=1000. The results show that diamond-Fe3O4/water hybrid nanofluid has higher convective heat transfer coefficient and Nusselt number when compared with diamond/water and Fe3O4/water conventional nanofluids. For diamond-Fe3O4/water hybrid nanofluid, until Re=600, the lowest total entropy generation rate values are obtained for 0.20% nanoparticle volume fraction. However, after Re=800, diamond-Fe3O4/water hybrid nanofluid with 0.20% nanoparticle volume fraction has the highest total entropy generation rate compared to other nanoparticle volume fractions. A similar pattern emerges from the comparison with diamond/water and Fe3O4/water conventional nanofluids. For 0.2% nanoparticle volume fraction, diamond-Fe3O4/water hybrid nanofluid and diamond/water nanofluid have their minimum entropy generation rate at Re=500 and at Re=900, respectively. Moreover, this minimum entropy generation rate point changes with nanoparticle volume fraction values of nanofluids
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
The condensation of an electron superfluid from a conventional metallic state
at a critical temperature is described well by the BCS theory. In the
underdoped copper-oxides, high-temperature superconductivity condenses instead
from a nonconventional metallic "pseudogap" phase that exhibits a variety of
non-Fermi liquid properties. Recently, it has become clear that a charge
density wave (CDW) phase exists within the pseudogap regime, appearing at a
temperature just above . The near coincidence of and
, as well the coexistence and competition of CDW and superconducting
order below , suggests that they are intimately related. Here we show that
the condensation of the superfluid from this unconventional precursor is
reflected in deviations from the predictions of BSC theory regarding the
recombination rate of quasiparticles. We report a detailed investigation of the
quasiparticle (QP) recombination lifetime, , as a function of
temperature and magnetic field in underdoped HgBaCuO
(Hg-1201) and YBaCuO (YBCO) single crystals by ultrafast
time-resolved reflectivity. We find that exhibits a local
maximum in a small temperature window near that is prominent in
underdoped samples with coexisting charge order and vanishes with application
of a small magnetic field. We explain this unusual, non-BCS behavior by
positing that marks a transition from phase-fluctuating SC/CDW composite
order above to a SC/CDW condensate below. Our results suggest that the
superfluid in underdoped cuprates is a condensate of coherently-mixed
particle-particle and particle-hole pairs
Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission
High- cuprate superconductors are characterized by a strong
momentum-dependent anisotropy between the low energy excitations along the
Brillouin zone diagonal (nodal direction) and those along the Brillouin zone
face (antinodal direction). Most obvious is the d-wave superconducting gap,
with the largest magnitude found in the antinodal direction and no gap in the
nodal direction. Additionally, while antinodal quasiparticle excitations appear
only below , superconductivity is thought to be indifferent to nodal
excitations as they are regarded robust and insensitive to . Here we
reveal an unexpected tie between nodal quasiparticles and superconductivity
using high resolution time- and angle-resolved photoemission on optimally doped
BiSrCaCuO. We observe a suppression of the nodal
quasiparticle spectral weight following pump laser excitation and measure its
recovery dynamics. This suppression is dramatically enhanced in the
superconducting state. These results reduce the nodal-antinodal dichotomy and
challenge the conventional view of nodal excitation neutrality in
superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
Trion induced negative photoconductivity in monolayer MoS2
Optical excitation typically enhances electrical conduction and low-frequency
radiation absorption in semiconductors. We have, however, observed a pronounced
transient decrease of conductivity in doped monolayer molybdenum disulfide
(MoS2), a two-dimensional (2D) semiconductor, under femtosecond laser
excitation. In particular, the conductivity is reduced dramatically down to
only 30% of its equilibrium value with high pump fluence. This anomalous
phenomenon arises from the strong many-body interactions in the system, where
photoexcited electron-hole pairs join the doping-induced charges to form
trions, bound states of two electrons and one hole. The resultant increase of
the carrier effective mass substantially diminishes the carrier conductivity
Quasiparticle spectrum of a type-II superconductor in a high magnetic field with randomly pinned vortices
We show that gapless superconductivity of a strongly type-II superconductor
in a high magnetic field prevails in the presence of disorder, suggesting a
topological nature. We calculate the density of states of the Bogoliubov-de
Gennes quasiparticles for a two-dimensional inhomogeneous system in both cases
of weak and strong disorder. In the limit of very weak disorder, the effect is
very small and the density of states is not appreciably changed. As the
disorder increases, the density of states at low energies increases and the
ratio of the low-energy density of states to its maximum increases
significantly
- …