8 research outputs found

    A Palette of Minimally Tagged Sucrose Analogues for Real‐Time Raman Imaging of Intracellular Plant Metabolism

    Get PDF
    Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy

    Rational Design and Synthesis of Large Stokes Shift 2,6-Sulphur-Disubstituted BODIPYs for Cell Imaging

    Get PDF
    Five new disubstituted 2,6-thioaryl-BODIPY dyes were synthesized via selective aromatic electrophilic substitution from commercially available thiophenols. The analysis of the photophysical properties via absorption and emission spectroscopy showed unusually large Stokes shifts for BODIPY fluorophores (70–100 nm), which makes them suitable probes for bioimaging. Selected compounds were evaluated for labelling primary immune cells as well as different cancer cell lines using confocal fluorescence microscopy

    A palette of minimally tagged sucrose analogues for real‐time Raman imaging of intracellular plant metabolism

    Get PDF
    Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy

    Supramolecular packing of alkyl substituted Janus face all-cis 2,3,4,5,6-pentafluorocyclohexyl motifs

    Get PDF
    We thank EPSRC for a grant (EP/R013799/1) and for a Studentship (JC) through the CRITICAT Centre for Doctoral training (CDT). FAPESP is also gratefully acknowledged for a studentship (BAP, #2019/03855-3), and a Young Research Award (RAC, #2018/03910-1). CENAPAD-SP, CESUP and SDumont are acknowledged for computational clusters used in theory calculations.This study uses X-ray crystallography, theory and Langmuir isotherm analysis to explore the conformations and molecular packing of alkyl all-cis 2,3,4,5,6-pentafluorocyclohexyl motifs, which are prepared by direct aryl hydrogenations from alkyl- or vinyl- pentafluoroaryl benzenes. Favoured conformations retain the more polar triaxial C-F bond arrangement of the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring systems with the alkyl substituent adopting an equatorial orientation, and accommodating strong supramolecular interactions between rings. Langmuir isotherm analysis on a water subphase of a long chain fatty acid and alcohol carrying terminal all-cis 2,3,4,5,6-pentafluorocyclohexyl rings do not show any indication of monolayer assembly relative to their cyclohexane analogues, instead the molecules appear to aggregate and form higher molecular assemblies prior to compression. The study indicates the power and potential of this ring system as a motif for ordering supramolecular assembly.Publisher PDFPeer reviewe

    CCDC 2068702 -2068707: Experimental Crystal Structure Determination

    No full text
    Related Article: Joshua L. Clark, Alaric Taylor, Ailsa Geddis, Rifahath M. Neyyappadath, Bruno A. Piscelli, Cihang Yu, David B. Cordes, Alexandra M. Z. Slawin, Rodrigo A. Cormanich, Stefan Guldin, David O'Hagan||Chemical Scienc
    corecore