4,749 research outputs found

    The impact of historical land use change from 1850 to 2000 on particulate matter and ozone

    Get PDF
    Anthropogenic land use change (LUC) since pre-industrial (1850) has altered the vegetation distribution and density around the world. We use a global model (GEOS-Chem) to assess the attendant changes in surface air quality and the direct radiative forcing (DRF). We focus our analysis on secondary particulate matter and tropospheric ozone formation. The general trend of expansion of managed ecosystems (croplands and pasturelands) at the expense of natural ecosystems has led to an 11 % decline in global mean biogenic volatile organic compound emissions. Concomitant growth in agricultural activity has more than doubled ammonia emissions and increased emissions of nitrogen oxides from soils by more than 50 %. Conversion to croplands has also led to a widespread increase in ozone dry deposition velocity. Together these changes in biosphere-atmosphere exchange have led to a 14 % global mean increase in biogenic secondary organic aerosol (BSOA) surface concentrations, a doubling of surface aerosol nitrate concentrations, and local changes in surface ozone of up to 8.5 ppb. We assess a global mean LUC-DRF of +0.017 Wm−2, −0.071 Wm−2, and −0.01 Wm−2 for BSOA, nitrate, and tropospheric ozone, respectively. We conclude that the DRF and the perturbations in surface air quality associated with LUC are substantial and should be considered alongside changes in anthropogenic emissions and climate feedbacks in chemistry-climate studies.https://www.atmos-chem-phys.net/16/14997/2016/acp-16-14997-2016.pdfhttps://www.atmos-chem-phys.net/16/14997/2016/acp-16-14997-2016.pdfPublished versio

    Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates

    Full text link
    We describe a variety of intriguing mode-coupling effects which can occur in a confined Bose-Einstein condensed system at finite temperature. These arise from strong interactions between a condensate fluctuation and resonances of the thermal cloud yielding strongly non-linear behaviour. We show how these processes can be affected by altering the aspect ratio of the trap, thereby changing the relevant mode-matching conditions. We illustrate how direct driving of the thermal cloud can lead to significant shifts in the excitation spectrum for a number of modes and provide further experimental scenarios in which the dramatic behaviour observed for the m=0m=0 mode at JILA (Jin {\it et al.} 1997) can be repeated. Our theoretical description is based on a successful second-order finite-temperature quantum field theory which includes the full coupled dynamics of the condensate and thermal cloud and all relevant finite-size effects

    Observations of reactive nitrogen oxide fluxes by eddy covariance above two midlatitude North American mixed hardwood forests

    Get PDF
    Significant knowledge gaps persist in the understanding of forest–atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NO<sub>x</sub> (= NO + NO<sub>2</sub>) is highly uncertain. Biosphere–atmosphere exchange of NO<sub>x</sub> and NO<sub>y</sub> (= NO<sub>x</sub> + HNO<sub>3</sub> + PANs + RONO<sub>2</sub> + <i>p</i>NO<sub>3</sub><sup>&minus;</sup> + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (Haliburton Forest and Wildlife Reserve, or HFWR), and a mixed hardwood forest in northern lower Michigan (Program for Research on Oxidants: Photochemistry, Emissions and Transport, or PROPHET) during the summers of 2011 and 2012 respectively. NO<sub>x</sub> and NO<sub>y</sub> mixing ratios were measured by a custom-built two-channel analyser based on chemiluminescence, with selective NO<sub>2</sub> conversion via LED photolysis and NO<sub>y</sub> conversion via a hot molybdenum converter. Consideration of interferences from water vapour and O<sub>3</sub>, and random uncertainty of the calculated fluxes are discussed. NO<sub>y</sub> flux observations were predominantly of deposition at both locations. In general, the magnitude of deposition scaled with NO<sub>y</sub> mixing ratios. Average midday (12:00–16:00) deposition velocities at HFWR and PROPHET were 0.20 ± 0.25 and 0.67 ± 1.24 cm s<sup>−1</sup> respectively. Average nighttime (00:00–04:00) deposition velocities were 0.09 ± 0.25 cm s<sup>−1</sup> and 0.08 ± 0.16 cm s<sup>−1</sup> respectively. At HFWR, a period of highly polluted conditions (NO<sub>y</sub> concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NO<sub>y</sub> flux was −0.14 mg (N) m<sup>−2</sup> day<sup>−1</sup> and −0.34 mg (N) m<sup>−2</sup> day<sup>−1</sup> (net deposition) at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22 and 40% at HFWR and PROPHET respectively

    Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films

    Get PDF
    The durations and average speeds of ultrashort optical pulses transmitted through chiral sculptured thin films (STFs) were calculated using a finite-difference time-domain algorithm. Chiral STFs are a class of nanoengineered materials whose microstructure comprises parallel helicoidal nanowires grown normal to a substrate. The nanowires are ∼\sim10-300 nm in diameter and ∼1−10μ\sim1-10 \mum in length. Durations of transmitted pulses tend to increase with decreasing (free-space) wavelength of the carrier plane wave, while average speeds tend to increase with increasing wavelength. An increase in nonlinearity, as manifested by an intensity-dependent refractive index in the frequency domain, tends to increase durations of transmitted pulses and decrease average speeds. The circular Bragg phenomenon exhibited by a chiral STFs manifests itself in the frequency domain as high reflectivity for normally incident carrier plane waves whose circular polarization state is matched to the structural handedness of the film and whose wavelength falls in a range known as the Bragg regime; films of the opposite structural handedness reflect such plane waves little. This effect tends to distort the shapes of transmitted pulses with respect to the incident pulses, and such shaping can cause sharp changes in some measures of average speed with respect to carrier wavelength. A local maximum in the variation of one measure of the pulse duration with respect to wavelength is noted and attributed to the circular Bragg phenomenon. Several of these effects are explained via frequency-domain arguments. The presented results serve as a foundation for future theoretical and experimental studies of optical pulse propagation through causal, nonlinear, nonhomogeneous, and anisotropic materials.Comment: To appear in Journal of Modern Optic

    Stratosphere-troposphere separation of nitrogen dioxide columns from the TEMPO geostationary satellite instrument

    Get PDF
    Separating the stratospheric and tropospheric contributions in satellite retrievals of atmospheric NO2 column abundance is a crucial step in the interpretation and application of the satellite observations. A variety of stratosphere–troposphere separation algorithms have been developed for sun-synchronous instruments in low Earth orbit (LEO) that benefit from global coverage, including broad clean regions with negligible tropospheric NO2 compared to stratospheric NO2. These global sun-synchronous algorithms need to be evaluated and refined for forthcoming geostationary instruments focused on continental regions, which lack this global context and require hourly estimates of the stratospheric column. Here we develop and assess a spatial filtering algorithm for the upcoming TEMPO geostationary instrument that will target North America. Developments include using independent satellite observations to identify likely locations of tropospheric enhancements, using independent LEO observations for spatial context, consideration of diurnally varying partial fields of regard, and a filter based on stratospheric to tropospheric air mass factor ratios. We test the algorithm with LEO observations from the OMI instrument with an afternoon overpass, and from the GOME-2 instrument with a morning overpass. We compare our TEMPO field of regard algorithm against an identical global algorithm to investigate the penalty resulting from the limited spatial coverage in geostationary orbit, and find excellent agreement in the estimated mean daily tropospheric NO2 column densities (R2=0.999, slope=1.009 for July and R2=0.998, slope=0.999 for January). The algorithm performs well even when only small parts of the continent are observed by TEMPO. The algorithm is challenged the most by east coast morning retrievals in the wintertime (e.g., R2=0.995, slope=1.038 at 14:00 UTC). We find independent global LEO observations (corrected for time of day) provide important context near the field-of-regard edges. We also test the performance of the TEMPO algorithm without these supporting global observations. Most of the continent is unaffected (R2=0.924 and slope=0.973 for July and R2=0.996 and slope=1.008 for January), with 90 % of the pixels having differences of less than ±0.2×1015 molecules cm−2 between the TEMPO tropospheric NO2 column density and the global algorithm. For near-real-time retrieval, even a climatological estimate of the stratospheric NO2 surrounding the field of regard would improve this agreement. In general, the additional penalty of a limited field of regard from TEMPO introduces no more error than normally expected in most global stratosphere–troposphere separation algorithms. Overall, we conclude that hourly near-real-time stratosphere–troposphere separation for the retrieval of NO2 tropospheric column densities by the TEMPO geostationary instrument is both feasible and robust, regardless of the diurnally varying limited field of regard.The authors are grateful to Kelly Chance, Xiong Liu, John Houck, Peter Zoogman, and other members of the TEMPO trace gas retrieval team for their input in preparation of this paper. Work at Dalhousie University was supported by Environment and Climate Change Canada. The authors also gratefully acknowledge the free use of TEMIS NO2 data from the GOME-2 sensor provided by http://www.temis.nl, last access: 12 November 2018, and the NASA Standard Product NO2 data from OMI provided by https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary, last access: 9 November 2018. (Environment and Climate Change Canada)https://www.atmos-meas-tech.net/11/6271/2018/Published versio

    Motivations and experiences of UK students studying abroad

    Get PDF
    This report summarises the findings of research aimed at improving understanding of the motivations behind the international diploma mobility of UK student

    Detecting early signs of depressive and manic episodes in patients with bipolar disorder using the signature-based model

    Full text link
    Recurrent major mood episodes and subsyndromal mood instability cause substantial disability in patients with bipolar disorder. Early identification of mood episodes enabling timely mood stabilisation is an important clinical goal. Recent technological advances allow the prospective reporting of mood in real time enabling more accurate, efficient data capture. The complex nature of these data streams in combination with challenge of deriving meaning from missing data mean pose a significant analytic challenge. The signature method is derived from stochastic analysis and has the ability to capture important properties of complex ordered time series data. To explore whether the onset of episodes of mania and depression can be identified using self-reported mood data.Comment: 12 pages, 3 tables, 10 figure

    The ozonolysis of primary aliphatic amines in fine particles

    No full text
    International audienceThe oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2? and NO3? ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3? (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3?3×10?7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10?3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed

    The ozonolysis of primary aliphatic amines in single and multicomponent fine particles

    No full text
    International audienceThe oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2? and NO3? ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitro alkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3?(HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3?3×10?7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides was shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10?3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g. NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed
    • …
    corecore