35 research outputs found

    Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo

    Get PDF
    How vascular tubes build, maintain and adapt continuously perfused lumens to meet local metabolic needs remains poorly understood. Recent studies showed that blood flow itself plays a critical role in the remodelling of vascular networks, and suggested it is also required for the lumenization of new vascular connections. However, it is still unknown how haemodynamic forces contribute to the formation of new vascular lumens during blood vessel morphogenesis. Here we report that blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing spherical deformations of the apical membrane of endothelial cells, in a process that we have termed inverse blebbing. We show that endothelial cells react to these membrane intrusions by local and transient recruitment and contraction of actomyosin, and that this mechanism is required for single, unidirectional lumen expansion in angiogenic sprouts. Our work identifies inverse membrane blebbing as a cellular response to high external pressure. We show that in the case of blood vessels such membrane dynamics can drive local cell shape changes required for global tissue morphogenesis, shedding light on a pressure-driven mechanism of lumen formation in vertebrates

    Pericytes or mesenchymal stem cells: is that the question?

    Get PDF
    For almost a decade, mesenchymal stem cells (MSCs) were believed to reside as perivascular cells in vivo. In this issue of Cell Stem Cell, Guimaraes-Camboa et al. (2017) challenge this idea and use lineage tracing to demonstrate that perivascular cells do not behave as tissue-specific progenitors in various organs, despite showing MSC potential in vitro

    Artery-vein specification in the zebrafish trunk is pre-patterned by heterogeneous Notch activity and balanced by flow-mediated fine tuning

    Get PDF
    How developing vascular networks acquire the right balance of arteries, veins and lymphatic vessels to efficiently supply and drain tissues is poorly understood. In zebrafish embryos, the robust and regular 50:50 global balance of intersegmental veins and arteries that form along the trunk, prompts the intriguing question how the organism keeps "count". Previous studies suggest that the ultimate fate of an intersegmental vessel (ISV) is determined by the identity of the approaching secondary sprout emerging from the posterior cardinal vein (PCV). Here, we show that the formation of a balanced trunk vasculature involves an early heterogeneity in endothelial cell (EC) behavior and Notch signaling activity in the seemingly identical primary ISVs that is independent of secondary sprouting and flow. We show that Notch signaling mediates the local patterning of ISVs, and an adaptive flow-mediated mechanism subsequently fine-tunes the global balance of arteries and veins along the trunk. We propose that this dual mechanism provides the adaptability required to establish a balanced network of arteries, veins and lymphatic vessels

    Adrenal function recovery after durable oral corticosteroid sparing with benralizumab in the PONENTE study

    Get PDF
    Background Oral corticosteroid (OCS) dependence among patients with severe eosinophilic asthma can cause adverse outcomes, including adrenal insufficiency. PONENTE's OCS reduction phase showed that, following benralizumab initiation, 91.5% of patients eliminated corticosteroids or achieved a final dosage ≀5 mg·day-1 (median (range) 0.0 (0.0-40.0) mg). Methods The maintenance phase assessed the durability of corticosteroid reduction and further adrenal function recovery. For ~6 months, patients continued benralizumab 30 mg every 8 weeks without corticosteroids or with the final dosage achieved during the reduction phase. Investigators could prescribe corticosteroids for asthma exacerbations or increase daily dosages for asthma control deteriorations. Outcomes included changes in daily OCS dosage, Asthma Control Questionnaire (ACQ)-6 and St George's Respiratory Questionnaire (SGRQ), as well as adrenal status, asthma exacerbations and adverse events. Results 598 patients entered PONENTE; 563 (94.1%) completed the reduction phase and entered the maintenance phase. From the end of reduction to the end of maintenance, the median (range) OCS dosage was unchanged (0.0 (0.0-40.0) mg), 3.2% (n=18/563) of patients experienced daily dosage increases, the mean ACQ-6 score decreased from 1.26 to 1.18 and 84.5% (n=476/563) of patients were exacerbation free. The mean SGRQ improvement (-19.65 points) from baseline to the end of maintenance indicated substantial quality-of-life improvements. Of patients entering the maintenance phase with adrenal insufficiency, 32.4% (n=104/321) demonstrated an improvement in adrenal function. Adverse events were consistent with previous reports. Conclusions Most patients successfully maintained maximal OCS reduction while achieving improved asthma control with few exacerbations and maintaining or recovering adrenal function

    A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation

    Get PDF
    © 2019 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41467-019-13149-7The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.This work was funded by the Novo Nordisk Foundation (NNF17CC0027852) and Danish National Research Foundation (DNRF116). J.C. and D.G.W. were supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001217), the UK Medical Research Council (FC001217), and the Wellcome Trust (FC001217). S.C. was supported by an SNSF Early Postdoc Mobility fellowship (P2ZHP3_164840) and a Long Term EMBO Postdoc fellowship (ALTF 511-2016), and L.S. and J.B.A. by the Independent Research Fund Denmark (DFF; Sapere Aude2 4183-00118B).Published versio

    CationAnion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    No full text
    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to a reevaluation of the strengths and limitations of Poisson–Boltzmann theory and highlights the need for next-generation atomic-level models of the ion atmosphere. [Image: see text
    corecore