18 research outputs found

    Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells

    Get PDF
    Most organic dyes synthesized for dye-sensitized solar cells (DSC) use a single linker group to bind to the metal oxide photo-anode. Here we describe the synthesis and testing of two new triphenylamine dyes containing either two carboxylic acids 5-[2-(4-diphenylamino-phenyl)-vinyl]-isophthalic acid (10) or two cyanoacrylic acids (2Z, 2′Z)-3, 3′-(5-((E)-4-(diphenylamino) styryl)-1, 3-phenylene) bis (2-cyanoacrylic acid) (8) as linker groups. Full characterization data are reported for these dyes and their synthetic intermediates. DSC devices have been prepared from these new dyes either by passive or fast dyeing and the dyes have also been tested in co-sensitized DSC devices leading to a PCE (η = 5.4%) for the double cyanoacrylate linker dye (8) co-sensitized with D149. The dye:TiO2 surface interactions and dye excitations are interpreted using three modelling methods: density functional theory (at 0 K); molecular dynamics (at 298 K); time dependent density functional theory. The modelling results show the preferred orientation of both dyes on an anatase (1 0 1) TiO2 surface to be horizontal, and both the simulated and experimental absorption spectra of the dye molecules indicate a red shifted band for (8) compared to (10). This is in line with broader light harvesting and Jsc for (8) compared to (10)

    Role of Molecular, Crystal, and Surface Chemistry in Directing the Crystallization of Entacapone Polymorphs on the Au(111) Template Surface

    Get PDF
    The pharmaceutical compound entacapone ((E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide) is important in the treatment of Parkinson’s disease, exhibiting interesting polymorphic behavior upon crystallization from solution. It consistently produces its stable form A with a uniform crystal size distribution on the surface of an Au(111) template while concomitantly forming its metastable form D within the same bulk solution. Molecular modeling using empirical atomistic force-fields reveals more complex molecular and intermolecular structures for form D compared to form A, with the crystal chemistry of both polymorphs being dominated by van der Waals and π–π stacking interactions with lower contributions (ca. 20%) from hydrogen bonding and electrostatic interactions. Comparative lattice energies and convergence for the polymorphs are consistent with the observed concomitant polymorphic behavior. Synthon characterization reveals an elongated needle-like morphology for form D crystals in contrast to the more equant form A crystals with the surface chemistry of the latter exposing the molecules’ cyano groups on its {010} and {011} habit faces. Density functional theory modeling of surface adsorption reveals preferential interactions between Au and the synthon GA interactions of form A on the Au surface. Molecular dynamics modeling of the entacapone/gold interface reveals the entacapone molecular structure within the first adsorbed layer to show nearly identical interaction distances, for both the molecules within form A or D with respect to the Au surface, while in the second and third layers when entacapone molecule–molecule interactions overtake the interactions between those of molecule–Au, the intermolecular structures are found to be closer to the form A structure than form D. In these layers, synthon GA (form A) could be reproduced with just two small azimuthal rotations (5° and 15°) whereas the closest alignment to a form D synthon requires larger azimuthal rotations (15° and 40°). The cyano functional group interactions with the Au template dominate interfacial interactions with these groups being aligned parallel to the Au surface and with nearest neighbor distances to Au atoms more closely matching those in form A than form D. The overall polymorph direction pathway thus encompasses consideration of molecular, crystal, and surface chemistry factors

    Novel benzothiazole half-squaraines: model chromophores to study dye–TiO2 interactions in dye-sensitized solar cells

    Get PDF
    We report the synthesis of 9 new half squaraine (HfSQ) dyes; 5 containing a benzothiazole moiety and 4 containing an indolenine moiety. X-ray single crystal structural and characterisation data have been correlated with device data to understand the widely reported but poorly understood influence of S heteroatoms on DSC device performance. The S heteroatom in these new dyes has also been used as an atomic probe of the dye–TiO2 interface to dye binding and orientation. Thus, for the first time, using the S heteroatom probe, angle-resolved X-ray photoelectron (AR-XPS) data have shown these dyes sit horizontally at the dye–TiO2 interface confirmed by DFT computer modelling of novel and analogous HfSQ dyes with a benzoindole backbone

    Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory

    Get PDF
    Crystal lattice energy is a key property affecting the ease of processing pharmaceutical materials during manufacturing, as well as product performance. We present an extensive comparison of 324 force-field protocols for calculating the lattice energies of single component, organic molecular crystals (further restricted to Z′ less than or equal to one), corresponding to a wide variety of force-fields (DREIDING, Universal, CVFF, PCFF, COMPASS, COMPASSII), optimization routines, and other variations, which could be implemented as part of an automated workflow using the industry standard Materials Studio software. All calculations were validated using a large new dataset (SUB-BIG), which we make publicly available. This dataset comprises public domain sublimation data, from which estimated experimental lattice energies were derived, linked to 235 molecular crystals. Analysis of pharmaceutical relevance was performed according to two distinct methods based upon (A) public and (B) proprietary data. These identified overlapping subsets of SUB-BIG comprising (A) 172 and (B) 63 crystals, of putative pharmaceutical relevance, respectively. We recommend a protocol based on the COMPASSII force field for lattice energy calculations of general organic or pharmaceutically relevant molecular crystals. This protocol was the most highly ranked prior to subsetting and was either the top ranking or amongst the top 15 protocols (top 5%) following subsetting of the dataset according to putative pharmaceutical relevance. Further analysis identified scenarios where the lattice energies calculated using the recommended force-field protocol should either be disregarded (values greater than or equal to zero and/or the messages generated by the automated workflow indicate extraneous atoms were added to the unit cell) or treated cautiously (values less than or equal to −249 kJ/mol), as they are likely to be inaccurate. Application of the recommended force-field protocol, coupled with these heuristic filtering criteria, achieved an root mean-squared error (RMSE) around 17 kJ/mol (mean absolute deviation (MAD) around 11 kJ/mol, Spearman’s rank correlation coefficient of 0.88) across all 226 SUB-BIG structures retained after removing calculation failures and applying the filtering criteria. Across these 226 structures, the estimated experimental lattice energies ranged from −60 to −269 kJ/mol, with a standard deviation around 29 kJ/mol. The performance of the recommended protocol on pharmaceutically relevant crystals could be somewhat reduced, with an RMSE around 20 kJ/mol (MAD around 13 kJ/mol, Spearman’s rank correlation coefficient of 0.76) obtained on 62 structures retained following filtering according to pharmaceutical relevance method B, for which the distribution of experimental values was similar. For a diverse set of 17 SUB-BIG entries, deemed pharmaceutically relevant according to method B, this recommended force-field protocol was compared to dispersion corrected density functional theory (DFT) calculations (PBE + TS). These calculations suggest that the recommended force-field protocol (RMSE around 15 kJ/mol) outperforms PBE + TS (RMSE around 37 kJ/mol), although it may not outperform more sophisticated DFT protocols and future studies should investigate this. Finally, further work is required to compare our recommended protocol to other lattice energy calculation protocols reported in the literature, as comparisons based upon previously reported smaller datasets indicated this protocol was outperformed by a number of other methods. The SUB-BIG dataset provides a basis for these future studies and could support protocol refinement

    Characterization of the defect sites in SnO2

    No full text
    This study reports investigations into the characterization of intrinsic and extrinsic defect sites in SnO2. The techniques employed in these investigations include the use of EXAFS in conjunction with static lattice computer simulations of pure SnO2 and SnO2 doped with the aliovalent cations Sb and Ga

    Single-crystal metal-oxide gas sensors

    No full text
    Polycrystalline n-type semiconducting metal oxides have been utilized as gas-sensing materials for the detection of toxic and flammable gases for many years. Although these devices can be highly sensitive to reducing gases, a frequent disadvantage is their lack of selectivity. However, work on zinc oxide has shown that using single crystals markedly improves the selectivity of the material to carbon monoxide. This paper reports a detailed investigation of the gas-sensing properties of other metal oxide single crystals, including tin oxide (SnO2), titanium oxide (TiO2) and iron oxide (Fe2O3), to CO, CH4 and water vapour

    DFT+U investigation of the catalytic properties of ferruginous clay

    No full text
    corecore