1,651 research outputs found

    GENERALIZED CYTOMEGALIC INCLUSION DISEASE

    Get PDF
    Click on the link to view

    Active Brownian particles with velocity-alignment and active fluctuations

    Full text link
    We consider a model of active Brownian particles with velocity-alignment in two spatial dimensions with passive and active fluctuations. Hereby, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed as independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account for example for thermal fluctuations. We derive a macroscopic description of the active Brownian particle gas with velocity-alignment interaction. Hereby, we start from the individual based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here in particular on the different impact of active and passive fluctuations on the onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuation lead to an earlier breakdown of collective motion and to emergence of a new bistable regime in the mean-field case.Comment: 5 figures, 22 pages, submitted to New Journal of Physic

    An Investigation of Gravitational Lensing in the Southern BL Lac PKS 0537-441

    Get PDF
    The BL-Lac family of active galaxies possess almost featureless spectra and exhibit rapid variability over their entire spectral range. A number of models have been developed to explain these extreme properties, several of which have invoked the action of microlensing by sub-stellar mass objects in a foreground galaxy; this not only introduces variability, but also amplifies an otherwise normal quasar source. Here we present recent spectroscopy and photometry of the southern BL Lac PKS 0537-441; with an inferred redshift of z~0.9 it represents one of the most distant and most luminous members of the BL Lac family. The goal of the observations was not only to confirm the redshift of PKS~0537-441, but also to determine the redshift of a putative galaxy along the line of sight to the BL-Lac; it has been proposed that this galaxy is the host of microlensing stars that account for PKS 0537-441's extreme properties. While several observations have failed to detect any extended emission in PKS 0537-441, the HST imaging data presented here indicate the presence of a galactic component, although we fail to identify any absorption features that reveal the redshift of the emission. It is also noted that PKS 0537-441 is accompanied by several small, but extended companions, located a few arcseconds from the point-like BL-Lac source. Two possibilities present themselves; either they represent true companions of PKS 0537-441, or are themselves gravitationally lensed images of more distant sources.Comment: 13 Pages with 4 Figures; Accepted for Publication by the Astrophysical Journa

    Coarse-graining the dynamics of coupled oscillators

    Full text link
    We present an equation-free computational approach to the study of the coarse-grained dynamics of {\it finite} assemblies of {\it non-identical} coupled oscillators at and near full synchronization. We use coarse-grained observables which account for the (rapidly developing) correlations between phase angles and oscillator natural frequencies. Exploiting short bursts of appropriately initialized detailed simulations, we circumvent the derivation of closures for the long-term dynamics of the assembly statistics.Comment: accepted for publication in Phys. Rev. Let

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Optimal Constraint Projection for Hyperbolic Evolution Systems

    Get PDF
    Techniques are developed for projecting the solutions of symmetric hyperbolic evolution systems onto the constraint submanifold (the constraint-satisfying subset of the dynamical field space). These optimal projections map a field configuration to the ``nearest'' configuration in the constraint submanifold, where distances between configurations are measured with the natural metric on the space of dynamical fields. The construction and use of these projections is illustrated for a new representation of the scalar field equation that exhibits both bulk and boundary generated constraint violations. Numerical simulations on a black-hole background show that bulk constraint violations cannot be controlled by constraint-preserving boundary conditions alone, but are effectively controlled by constraint projection. Simulations also show that constraint violations entering through boundaries cannot be controlled by constraint projection alone, but are controlled by constraint-preserving boundary conditions. Numerical solutions to the pathological scalar field system are shown to converge to solutions of a standard representation of the scalar field equation when constraint projection and constraint-preserving boundary conditions are used together.Comment: final version with minor changes; 16 pages, 14 figure

    SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

    Full text link
    We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23" (80 pc) for the continuum and 0.33" (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.Comment: ApJ. in press. 26 pages, 10 figure

    Steady shear flow thermodynamics based on a canonical distribution approach

    Full text link
    A non-equilibrium steady state thermodynamics to describe shear flows is developed using a canonical distribution approach. We construct a canonical distribution for shear flow based on the energy in the moving frame using the Lagrangian formalism of the classical mechanics. From this distribution we derive the Evans-Hanley shear flow thermodynamics, which is characterized by the first law of thermodynamics dE=TdSQdγdE = T dS - Q d\gamma relating infinitesimal changes in energy EE, entropy SS and shear rate γ\gamma with kinetic temperature TT. Our central result is that the coefficient QQ is given by Helfand's moment for viscosity. This approach leads to thermodynamic stability conditions for shear flow, one of which is equivalent to the positivity of the correlation function of QQ. We emphasize the role of the external work required to sustain the steady shear flow in this approach, and show theoretically that the ensemble average of its power W˙\dot{W} must be non-negative. A non-equilibrium entropy, increasing in time, is introduced, so that the amount of heat based on this entropy is equal to the average of W˙\dot{W}. Numerical results from non-equilibrium molecular dynamics simulation of two-dimensional many-particle systems with soft-core interactions are presented which support our interpretation.Comment: 23 pages, 7 figure

    The Canada-UK Deep Submillimeter Survey VI: The 3-Hour Field

    Get PDF
    We present the complete submillimeter data for the Canada-UK Deep Submillimeter Survey (CUDSS) 3-hour field. The obeservations were taken with the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope on Mauna Kea. The 3-hour field is one of two main fields in our survey and covers 60 square arcminutes to a 3-sigma depth of 3 mJy. In this field we have detected 27 sources above 3-sigma and 15 above 3.5-sigma. We assume the source counts follow the form N(S)SαN(S) {\propto} S^{-\alpha} and measure α\alpha = 3.31.0+1.4^{+1.4}_{-1.0}. This is in good agreement with previous studies and further supports our claim (Eales et al., 2000) that SCUBA sources brighter than 3 mJy produce ~20% of the 850μ\mum background energy. Using preliminary ISO 15 μ\mum maps and VLA 1.4 GHz data we have identified counterparts for six objects and have marginal detections at 450μ\mum for two additional sources. With this information we estimate a median redshift for the sample of 2.0±\pm0.5, with \sim10% lying at z<z< 1. We have measured the angular clustering of S850 > 3 mJy sources using the source catalogues from the CUDSS two main fields, the 3-hour and 14-hour fields, and find a marginal detection of clustering, primarily from the 14-hour field, of ω(θ)=4.4±2.9θ0.8\omega(\theta)=4.4\pm2.9 \theta^{-0.8}. This is consistent with clustering at least as strong as that seen for the Lyman-break galaxy population and the Extremely Red Objects. Since SCUBA sources are selected over a broader range in redshifts than these two populations the strength of the true spatial clustering is expected to be correspondingly stronger.Comment: 17 pages, 8 figures, submitted to Ap

    Herschel imaging of the dust in the Helix Nebula (NGC 7293)

    Get PDF
    In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instruments on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a distance of 216 pc. The temperature map shows dust temperatures between 22 and 42 K, which is similar to the kinetic temperature of the molecular gas, strengthening the fact that the dust and gas co-exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX, Hbeta) and molecular hydrogen component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.Comment: 8 pages, 9 figures, revised version A&A in pres
    corecore