16,280 research outputs found
Synthetic horizontal branch morphology for different metallicities and ages under tidally enhanced stellar wind
It is believed that, except for metallicity, some other parameters are needed
to explain the horizontal branch (HB) morphology of globular clusters (GCs).
Furthermore, these parameters are considered to be correlated with the mass
loss of the red giant branch (RGB) stars. In our previous work, we proposed
that tidally enhanced stellar wind during binary evolution may affect the HB
morphology by enhancing the mass loss of the red giant primary. As a further
study, we now investigate the effects of metallicity and age on HB morphology
by considering tidally enhanced stellar winds during binary evolution. We
incorporated the tidally enhanced-stellar-wind model into Eggleton's stellar
evolution code to study the binary evolution. To study the effects of
metallicity and age on our final results, we conducted two sets of model
calculations: (i) for a fixed age, we used three metallicities, namely
Z=0.0001, 0.001, and 0.02. (ii) For a fixed metallicity, Z=0.001, we used five
ages in our model calculations: 14, 13, 12, 10, and 7 Gyr. We found that HB
morphology of GCs becomes bluer with decreasing metallicity, and old GCs
present bluer HB morphology than young ones. These results are consistent with
previous work. Although the envelope-mass distributions of zero-age HB stars
produced by tidally enhanced stellar wind are similar for different
metallicities, the synthetic HB under tidally enhanced stellar wind for Z=0.02
presented a distinct gap between red and blue HB. However, this feature was not
seen clearly in the synthetic HB for Z=0.001 and 0.0001. We also found that
higher binary fractions may make HB morphology become bluer, and we discussed
the results with recent observations.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in Astronomy
& Astrophysic
Y(so(5)) symmtry of the nonlinear Schrdinger model with four-cmponents
The quantum nonlinear Schrdinger(NLS) model with four-component
fermions exhibits a symmetry when considered on an infintite
interval. The constructed generators of Yangian are proved to satisfy the
Drinfel'd formula and furthermore, the relation with the general form of
rational R-matrix given by Yang-Baxterization associated with algebraic
structure.Comment: 10 pages, no figure
Algebraic Bethe Ansatz for Integrable Extended Hubbard Models Arising from Supersymmetric Group Solutions
Integrable extended Hubbard models arising from symmetric group solutions are
examined in the framework of the graded Quantum Inverse Scattering Method. The
Bethe ansatz equations for all these models are derived by using the algebraic
Bethe ansatz method.Comment: 15 pages, RevTex, No figures, to be published in J. Phys.
A new tow-parameter integrable model of strongly correlated electrons with quantum superalgebra symmetry
A new two-parameter integrable model with quantum superalgebra
symmetry is proposed, which is an eight-state electron model with correlated
single-particle and pair hoppings as well as uncorrelated triple-particle
hopping. The model is solved and the Bethe ansatz equations are obtained.Comment: 6 pages, RevTe
Variational formulas of higher order mean curvatures
In this paper, we establish the first variational formula and its
Euler-Lagrange equation for the total -th mean curvature functional
of a submanifold in a general Riemannian manifold
for . As an example, we prove that closed
complex submanifolds in complex projective spaces are critical points of the
functional , called relatively -minimal submanifolds,
for all . At last, we discuss the relations between relatively -minimal
submanifolds and austere submanifolds in real space forms, as well as a special
variational problem.Comment: 13 pages, to appear in SCIENCE CHINA Mathematics 201
Modeling the functional genomics of autism using human neurons.
Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD
Stellar adiabatic mass loss model and applications
Roche-lobe overflow and common envelope evolution are very important in
binary evolution, which is believed to be the main evolutionary channel to hot
subdwarf stars. The details of these processes are difficult to model, but
adiabatic expansion provides an excellent approximation to the structure of a
donor star undergoing dynamical time scale mass transfer. We can use this model
to study the responses of stars of various masses and evolutionary stages as
potential donor stars, with the urgent goal of obtaining more accurate
stability criteria for dynamical mass transfer in binary population synthesis
studies. As examples, we describe here several models with the initial masses
equal to 1 Msun and 10 Msun, and identify potential limitations to the use of
our results for giant-branch stars.Comment: 7 pages, 5 figures,Accepted for publication in AP&SS, Special issue
Hot Sub-dwarf Stars, in Han Z., Jeffery S., Podsiadlowski Ph. ed
- …