research

Variational formulas of higher order mean curvatures

Abstract

In this paper, we establish the first variational formula and its Euler-Lagrange equation for the total 2p2p-th mean curvature functional M2p\mathcal {M}_{2p} of a submanifold MnM^n in a general Riemannian manifold Nn+mN^{n+m} for p=0,1,...,[n2]p=0,1,...,[\frac{n}{2}]. As an example, we prove that closed complex submanifolds in complex projective spaces are critical points of the functional M2p\mathcal {M}_{2p}, called relatively 2p2p-minimal submanifolds, for all pp. At last, we discuss the relations between relatively 2p2p-minimal submanifolds and austere submanifolds in real space forms, as well as a special variational problem.Comment: 13 pages, to appear in SCIENCE CHINA Mathematics 201

    Similar works

    Full text

    thumbnail-image

    Available Versions