47,392 research outputs found

    Anti-chiral edge states in an exciton polariton strip

    Full text link
    We present a scheme to obtain anti-chiral edge states in an exciton-polariton honeycomb lattice with strip geometry, where the modes corresponding to both edges propagate in the same direction. Under resonant pumping the effect of a polariton condensate with nonzero velocity in one linear polarization is predicted to tilt the dispersion of polaritons in the other, which results in an energy shift between two Dirac cones and the otherwise flat edge states become tilted. Our simulations show that due to the spatial separation from the bulk modes the edge modes are robust against disorder.Comment: 6 pages, 5 figure

    Simulations for Multi-Object Spectrograph Planet Surveys

    Get PDF
    Radial velocity surveys for extra-solar planets generally require substantial amounts of large telescope time in order to monitor a sufficient number of stars. Two of the aspects which can limit such surveys are the single-object capabilities of the spectrograph, and an inefficient observing strategy for a given observing window. In addition, the detection rate of extra-solar planets using the radial velocity method has thus far been relatively linear with time. With the development of various multi-object Doppler survey instruments, there is growing potential to dramatically increase the detection rate using the Doppler method. Several of these instruments have already begun usage in large scale surveys for extra-solar planets, such as FLAMES on the VLT and Keck ET on the Sloan 2.5m wide-field telescope. In order to plan an effective observing strategy for such a program, one must examine the expected results based on a given observing window and target selection. We present simulations of the expected results from a generic multi-object survey based on calculated noise models and sensitivity for the instrument and the known distribution of exoplanetary system parameters. We have developed code for automatically sifting and fitting the planet candidates produced by the survey to allow for fast follow-up observations to be conducted. The techniques presented here may be applied to a wide range of multi-object planet surveys.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Learning Temporal Transformations From Time-Lapse Videos

    Full text link
    Based on life-long observations of physical, chemical, and biologic phenomena in the natural world, humans can often easily picture in their minds what an object will look like in the future. But, what about computers? In this paper, we learn computational models of object transformations from time-lapse videos. In particular, we explore the use of generative models to create depictions of objects at future times. These models explore several different prediction tasks: generating a future state given a single depiction of an object, generating a future state given two depictions of an object at different times, and generating future states recursively in a recurrent framework. We provide both qualitative and quantitative evaluations of the generated results, and also conduct a human evaluation to compare variations of our models.Comment: ECCV201

    The Design for a Nanoscale Single-Photon Spin Splitter

    Full text link
    We propose using the effective spin-orbit interaction of light in Bragg-modulated cylindrical waveguides for the effcient separation of spin-up and spin-down photons emitted by a single photon emitter. Due to the spin and directional dependence of photonic stopbands in the waveguides, spin-up (down) photon propagation in the negative (positive) direction along the waveguide axis is blocked while the same photon freely propagates in the opposite direction.Comment: 5 pages, 3 figure

    Exact Renormalization of Massless QED2

    Full text link
    We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.Comment: 14 pages, no figures, introduction and conclusions modifie

    Nucleon Spin in QCD: Old Crisis and New Resolution

    Full text link
    We discuss the shortfalls of existing resolutions of the long-standing gauge invariance problem of the canonical decomposition of the nucleon spin to the spin and angular momentum of quarks and gluons. We provide two logically flawless expressions of nucleon spin which have different physical meanings, using the gauge independent Abelian decomposition. The first one is based on the assumption that all gluons (binding and valence gluons) contribute to the nucleon spin, but the second one is based on the assumption that only the binding gluons (and the quarks) contribute to it. We propose the second expression to be the physically correct one

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GIGbG_I \ll G_b

    Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant

    Full text link
    We compute the dimensionality dependence of η/s\eta/s for charged black branes with Gauss-Bonnet correction. We find that both causality and stability constrain the value of Gauss-Bonnet coupling constant to be bounded by 1/4 in the infinite dimensionality limit. We further show that higher dimensionality stabilize the gravitational perturbation. The stabilization of the perturbation in higher dimensional space-time is a straightforward consequence of the Gauss-Bonnet coupling constant bound.Comment: 16 pages,3 figures+3 tables,typos corrected, published versio

    Acoustic black holes for relativistic fluids

    Full text link
    We derive a new acoustic black hole metric from the Abelian Higgs model. In the non-relativistic limit, while the Abelian Higgs model becomes the Ginzburg-Landau model, the metric reduces to an ordinary Unruh type. We investigate the possibility of using (type I and II) superconductors as the acoustic black holes. We propose to realize experimental acoustic black holes by using spiral vortices solutions from the Navier-stokes equation in the non-relativistic classical fluids.Comment: 16 pages. typos corrected, contents expande
    corecore